版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆青海省互助縣第一中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線與直線平行,則的值為A. B.C.1 D.2.若,則A. B.C. D.3.A. B.C.1 D.4.若函數(shù)f(x)滿足“對任意x1,x2∈(0,+∞),當x1<x2時,都有f(x1)>f(x2)”,則f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)5.設(shè),若直線與直線平行,則的值為A. B.C.或 D.或6.若,,則角的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知指數(shù)函數(shù)在上單調(diào)遞增,則的值為()A.3 B.2C. D.8.將函數(shù)的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是A. B.C. D.9.若直線與圓相交于兩點,且,則A2 B.C.1 D.10.下列命題中,錯誤的是()A.平行于同一條直線的兩條直線平行B.已知直線垂直于平面內(nèi)的任意一條直線,則直線垂直于平面C.已知直線平面,直線,則直線D.已知為直線,、為平面,若且,則二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的遞增區(qū)間是__________________12.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(?∞,0)上單調(diào)遞增.若實數(shù)a滿足f(2|a-1|)>f(-2),則a的取值范圍是13.銳角中,分別為內(nèi)角的對邊,已知,,,則的面積為__________14.如圖,矩形是平面圖形斜二測畫法的直觀圖,且該直觀圖的面積為,則平面圖形的面積為______.15.,,則的值為__________.16.已知函數(shù)則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當時,用定義法證明函數(shù)在上是減函數(shù);(2)已知二次函數(shù)滿足,,若不等式恒成立,求的取值范圍.18.已知(),求:(1);(2).19.已知函數(shù)是偶函數(shù)(1)求實數(shù)的值;(2)若函數(shù)的最小值為,求實數(shù)的值;(3)當為何值時,討論關(guān)于的方程的根的個數(shù)20.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.21.已知函數(shù)在閉區(qū)間()上的最小值為(1)求的函數(shù)表達式;(2)畫出的簡圖,并寫出的最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由題意可得:,解得故選2、D【解析】利用同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式把要求的式子化為,把已知條件代入運算,求得結(jié)果.【詳解】,,故選D.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式的應(yīng)用,屬于中檔題.3、A【解析】由題意可得:本題選擇A選項.4、C【解析】根據(jù)條件知,f(x)在(0,+∞)上單調(diào)遞減對于A,f(x)=(x-1)2在(1,+∞)上單調(diào)遞增,排除A;對于B,f(x)=ex在(0,+∞)上單調(diào)遞增,排除B;對于C,f(x)=在(0,+∞)上單調(diào)遞減,C正確;對于D,f(x)=ln(x+1)在(0,+∞)上單調(diào)遞增,排除D.5、B【解析】由a(a+1)﹣2=0,解得a.經(jīng)過驗證即可得出【詳解】由a(a+1)﹣2=0,解得a=﹣2或1經(jīng)過驗證:a=﹣2時兩條直線重合,舍去∴a=1故選B【點睛】本題考查了兩條直線平行的充要條件,考查了推理能力與計算能力,屬于基礎(chǔ)題6、B【解析】應(yīng)用誘導(dǎo)公式可得,,進而判斷角的終邊所在象限.【詳解】由題設(shè),,,所以角的終邊在第二象限.故選:B7、B【解析】令系數(shù)為,解出的值,又函數(shù)在上單調(diào)遞增,可得答案【詳解】解得,又函數(shù)在上單調(diào)遞增,則,故選:B8、C【解析】將函數(shù)的圖象上所有的點向右平行移動個單位長度,所得函數(shù)圖象的解析式為y=sin(x-);再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是.故選C.9、C【解析】圓心到直線的距離為,所以,選C.10、C【解析】由平行線的傳遞性可判斷A;由線面垂直的定義可判斷B;由線面平行的定義可判斷C;由線面平行的性質(zhì)和線面垂直的性質(zhì),結(jié)合面面垂直的判定定理,可判斷D.【詳解】解:由平行線的傳遞性可得,平行于同一條直線的兩條直線平行,故A正確;由線面垂直的定義可得,若直線垂直于平面內(nèi)的任意一條直線,則直線垂直于平面,故B正確;由線面平行的定義可得,若直線平面,直線,則直線或,異面,故C錯誤;若,由線面平行的性質(zhì),可得過的平面與的交線與平行,又,可得,結(jié)合,可得,故D正確.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由已知有,解得,即函數(shù)的定義域為,又是開口向下的二次函數(shù),對稱軸,所以的單調(diào)遞增區(qū)間為,又因為函數(shù)以2為底的對數(shù)型函數(shù),是增函數(shù),所以函數(shù)的遞增區(qū)間為點睛:本題主要考查復(fù)合函數(shù)的單調(diào)區(qū)間,屬于易錯題.在求對數(shù)型函數(shù)的單調(diào)區(qū)間時,一定要注意定義域12、(【解析】由題意f(x)在(0,+∞)上單調(diào)遞減,又f(x)是偶函數(shù),則不等式f(2a-1)>f(-2)可化為f(213、【解析】由已知條件可得,,再由正弦定理可得,從而根據(jù)三角形內(nèi)角和定理即可求得,從而利用公式即可得到答案.【詳解】,由得,又為銳角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案為.【點睛】三角形面積公式的應(yīng)用原則:(1)對于面積公式S=absinC=acsinB=bcsinA,一般是已知哪一個角就使用哪一個公式(2)與面積有關(guān)的問題,一般要用到正弦定理或余弦定理進行邊和角的轉(zhuǎn)化14、【解析】由題意可知,該幾何體的直觀圖面積,可通過,帶入即可求解出該平面圖形的面積.【詳解】解:由題意,直觀圖的面積為,因為直觀圖和原圖面積之間的關(guān)系為,所以原圖形的面積是故答案為:.15、#0.3【解析】利用“1”的代換,構(gòu)造齊次式方程,再代入求解.【詳解】,故答案為:16、5【解析】先求出,再根據(jù)該值所處范圍代入相應(yīng)的解析式中計算結(jié)果.【詳解】由題意可得,則,故答案為:5.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)在上為減函數(shù).運用單調(diào)性的定義證明,注意取值、作差和變形、定符號、下結(jié)論等步驟;(2)設(shè),由題意可得,,的方程,解得,,,可得,由參數(shù)分離和二次函數(shù)的最值求法,可得所求范圍【詳解】解:(1)在上為減函數(shù)證明:設(shè),,由,可得,,即,即有,所以在上為減函數(shù);(2)設(shè),則,由,可得,則,,解得,,即有,不等式恒成立,即為,即對恒成立,由,當時,取得最小值,可得即的取值范圍是18、(1);(2).【解析】(1)用誘導(dǎo)公式化簡已知式為,已知式平方后可求得;(2)已知式平方后減去,再考慮到就可求得.【詳解】(1)由可得,所以,所以;(2),又因為,所以,,所以.【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵是熟記誘導(dǎo)公式,以及,,之間的聯(lián)系即,.19、(1)(2)(3)當時,方程有一個根;當時,方程沒有根;當或或時,方程有兩個根;當時,方程有三個根;當時,方程有四個根【解析】(1)利用偶函數(shù)滿足,求出的值;(2)對函數(shù)變形后利用二次函數(shù)的最值求的值;(3)定義法得到的單調(diào)性,方程通過換元后得到的根的情況,通過分類討論最終求出結(jié)果.【小問1詳解】由題意得:,即,所以,其中,∴,解得:【小問2詳解】,∴,故函數(shù)的最小值為,令,故的最小值為,等價于,解得:或,無解綜上:【小問3詳解】由,令,,有由,有,,可得,可知函數(shù)為增函數(shù),故當時,函數(shù)單調(diào)遞增,由函數(shù)為偶函數(shù),可知函數(shù)的增區(qū)間為,減區(qū)間為,令,有,方程(記為方程①)可化為,整理為:(記為方程②),,當時,有,此時方程②無解,可得方程①無解;當時,時,方程②的解為,可得方程①僅有一個解為;時,方程②的解為,可得方程①有兩個解;當時,可得或,1°當方程②有零根時,,此時方程②還有一根為,可得此時方程①有三個解;2°當方程②有兩負根時,可得,不可能;3°當方程②有兩正根時,可得:,又由,可得,此時方程①有四個根;4°當方程②有一正根一負根時,,可得:或,又由,可得或,此時方程①有兩個根,由上知:當時,方程①有一個根;當時,方程①沒有根;當或或時,方程①有兩個根;當時,方程①有三個根;當時,方程①有四個根【點睛】對于復(fù)合函數(shù)根的個數(shù)問題,要用換元法來求解,通常方法會用到根的判別式,導(dǎo)函數(shù),基本不等式等.20、(1);(2)【解析】(1)設(shè)二次函數(shù)f(x)=ax2+bx+c,利用待定系數(shù)法即可求出f(x);(2)利用一元二次不等式的解法即可得出【詳解】(1).設(shè)二次函數(shù)f(x)=ax2+bx+c,∵函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化為x2﹣3x﹣4>0化為(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集為【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式和一元二次不等式的解法,熟練掌握其方法是解題的關(guān)鍵,屬于中檔題.21、(1)(2)見解析【解析】【試題分析】(1)由于函數(shù)的對稱軸為且開口向上,所以按三類,討論函數(shù)的最小值.(2)由(1)將分段函數(shù)的圖象畫出,由圖象可判斷出函數(shù)的最小值.【試題解析】(1)依題意知,函數(shù)是開口向上的拋物線,∴函數(shù)有最小值,且當時,下面分情況討論函數(shù)在閉區(qū)間()上的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省衡水市景縣中學(xué)2025屆生物高一上期末檢測試題含解析
- 宜昌市重點中學(xué)2025屆高三語文第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 2025屆江西省宜春市上高縣二中生物高一第一學(xué)期期末經(jīng)典模擬試題含解析
- 2025屆山東省青島第三中學(xué)高一上數(shù)學(xué)期末綜合測試試題含解析
- 雙鴨山市重點中學(xué)2025屆高二生物第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 四川省普通高中2025屆生物高三上期末調(diào)研試題含解析
- 2025屆廣東二師學(xué)院番禺附學(xué)英語高三第一學(xué)期期末聯(lián)考模擬試題含解析
- 河南省鄭州市中原區(qū)第一中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析
- 天津市一中2025屆生物高二上期末聯(lián)考模擬試題含解析
- 山西省朔州市第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 壓力管道安裝許可規(guī)則-TSG D3001-2021
- 煤氣中毒事故應(yīng)急演練預(yù)案方案
- 體檢科醫(yī)療質(zhì)量控制工作計劃
- 國有公司總部禮品管理辦法 模版
- 口腔頜面部檢查課件
- 2020年重癥醫(yī)學(xué)科病人呼吸心跳驟停演練方案及腳本
- 平衡記分卡應(yīng)用流程
- 呼吸道感染病毒培訓(xùn)課件
- 重癥超聲課件
- 物聯(lián)網(wǎng)信息安全知識考核試題與答案
- 車輛駕駛業(yè)務(wù)外包服務(wù)方案
評論
0/150
提交評論