【華師】期中模擬卷01【11~13章】_第1頁(yè)
【華師】期中模擬卷01【11~13章】_第2頁(yè)
【華師】期中模擬卷01【11~13章】_第3頁(yè)
【華師】期中模擬卷01【11~13章】_第4頁(yè)
【華師】期中模擬卷01【11~13章】_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試題01(華師版)(測(cè)試范圍:第11~13章)一、選擇題(每小題3分,共30分)1.16的平方根是()A.4 B.-4 C.2 D.±22.下列計(jì)算結(jié)果正確的是()A.a33=aC.ab42=a3.對(duì)于①x?3xy=x1?3x,②x+3x?3=A.都是因式分解 B.都是整式乘法運(yùn)算C.①是因式分解,②是整式乘法運(yùn)算 D.①是整式乘法運(yùn)算,②是因式分解4.關(guān)于8的敘述,正確的是()A.在數(shù)軸上不存在表示8的點(diǎn) B.8C.8表示8的平方根 D.與8最接近的整數(shù)是35.若實(shí)數(shù)m、n滿足等式m2?4m+4+n?4=0.且m、nA.8 B.10 C.8或10 D.126.若一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)奇數(shù)的平方差,則稱(chēng)這個(gè)正整數(shù)為“好數(shù)”.下列正整數(shù)中能稱(chēng)為“好數(shù)”的是()A.205 B.250 C.502 D.5207.如圖,在△ABC中,AB=AC,AD=DE,若∠BAD=18°,∠EDC=12°A.56° B.58° C.60° D.62°8.一個(gè)正數(shù)b的平方根為a+1和2a?7,則9a+b的立方根是()A.2 B.3 C.9 D.±39.在一張長(zhǎng)為10cm,寬為8cm的矩形紙片上,要剪下一個(gè)腰長(zhǎng)為5cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與矩形的頂點(diǎn)A重合,其余的兩個(gè)頂點(diǎn)都在矩形邊上),這個(gè)等腰三角形有幾種剪法()A.1 B.2 C.3 D.410.如圖,有兩個(gè)正方形A,B,現(xiàn)將B放在A的內(nèi)部得圖甲,將A,B并列放置后構(gòu)造新的正方形得圖乙,若圖甲和圖乙中陰影部分的面積分別為4和30,則正圖乙的邊長(zhǎng)為()A.7 B.8 C.5.6 D.10二、填空題(每小題3分,共15分)11.寫(xiě)出一個(gè)比大且比10小的整數(shù)是___________.12.如圖,用兩個(gè)面積為3cm2的小正方形紙片剪拼成一個(gè)大的正方形,則以數(shù)軸上表示1的點(diǎn)A為圓心,以大正方形的邊長(zhǎng)為半徑畫(huà)弧,與數(shù)軸的交點(diǎn)表示的實(shí)數(shù)是____.13.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若※,則x的值為_(kāi)____.14.如圖,點(diǎn)E,F(xiàn)分別在□ABCD的邊AB,CD的延長(zhǎng)線上,連接EF,分別交AD,BC于G,H.添加一個(gè)條件使△AEG≌△CFH,這個(gè)條件可以是______.(只需寫(xiě)一種情況)

15.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別是點(diǎn)D,E,當(dāng)AD=3,BE=1時(shí),則DE的長(zhǎng)為_(kāi)_______.三、解答題(共8題,滿分75分)16.先化簡(jiǎn),再求值:[(x+y)(x﹣y)+2y(x﹣y)﹣(x﹣y)2]÷(2y),其中x=1,y=2.17.分解因式.(1)?x3+2x2?x18.如圖,一只螞蟻從點(diǎn)A沿?cái)?shù)軸向右爬了2個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,點(diǎn)A表示?2,設(shè)點(diǎn)B所表示的數(shù)為m(1)m=______.(2)求m+1+(3)在數(shù)軸上還有C、D兩點(diǎn)分別表示實(shí)數(shù)c和d,且有2c+6與d?4互為相反數(shù),求2c+3d的平方跟.19.如圖,四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、.給出下列五個(gè)關(guān)系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠(1)用序號(hào)寫(xiě)出一個(gè)真命題(書(shū)寫(xiě)形式如:如果×××,那么××).并給出證明;(2)用序號(hào)再寫(xiě)出三個(gè)真命題(不要求證明).20.閱讀下列解答過(guò)程:若二次三項(xiàng)式x2-4x+m有一個(gè)因式是x+3,求另一個(gè)因式及m的值.解:設(shè)另一個(gè)因式為x+a則x2-4x+m=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,∴a+3=?43a=m∴∴另一個(gè)因式為x-7,m的值為-21.請(qǐng)依照以上方法解答下面問(wèn)題:(1)已知二次三項(xiàng)式x2+3x-k有一個(gè)因式是x-5,求另一個(gè)因式及k的值;(2)已知二次三項(xiàng)式2x2+5x+k有一個(gè)因式是x+3,求另一個(gè)因式及k的值.21.先閱讀理解下面的例題,再按要求解答下面的問(wèn)題:例題:說(shuō)明代數(shù)式m2+2m+4的值一定是正數(shù).解:m2+2m+4=m2+2m+1+3=(m+1)2+3.∵(m+1)2≥0,∴(m+1)2+3≥3,∴m2+2m+4的值一定是正數(shù).(1)說(shuō)明代數(shù)式﹣a2+6a﹣10的值一定是負(fù)數(shù).(2)設(shè)正方形面積為S1,長(zhǎng)方形的面積為S2,正方形的邊長(zhǎng)為a,如果長(zhǎng)方形的一邊長(zhǎng)比正方形的邊長(zhǎng)少3,另一邊長(zhǎng)為4,請(qǐng)你比較S1與S2的大小關(guān)系,并說(shuō)明理由.22.【問(wèn)題】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C作直線l平行于AB.∠EDF=90°,點(diǎn)D在直線L上移動(dòng),角的一邊DE始終經(jīng)過(guò)點(diǎn)B,另一邊DF與AC交于點(diǎn)P,研究DP和DB的數(shù)量關(guān)系.【探究發(fā)現(xiàn)】(1)如圖2,某數(shù)學(xué)興趣小組運(yùn)用從特殊到一般的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點(diǎn)D移動(dòng)到使點(diǎn)P與點(diǎn)C重合時(shí),通過(guò)推理就可以得到DP=DB,請(qǐng)寫(xiě)出證明過(guò)程;【數(shù)學(xué)思考】(2)如圖3,若點(diǎn)P是AC上的任意一點(diǎn)(不含端點(diǎn)A、C),受(1)的啟發(fā),這個(gè)小組過(guò)點(diǎn)D作DG⊥CD交BC于點(diǎn)G,就可以證明DP=DB,請(qǐng)完成證明過(guò)程.23.(1)如圖1,AB=AC,∠B=∠EDF,DE=DF,F(xiàn)C=2,BE=4(2)如圖2,AB=AC,∠ABC=∠EDF,DE=DF(3)如圖3,在中,∠B=∠ADE=45°,∠C=22.5°,DA=DE,AB=3,BD=2,則DC=______.

2023-2024學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試題01(華師版)(測(cè)試范圍:第11~13章)一、選擇題(每小題3分,共30分)1.16的平方根是()A.4 B.-4 C.2 D.±2【答案】D【解析】【分析】先求出,再根據(jù)平方根的性質(zhì),即可求解.【詳解】解:∵,∴16的平方根是±4故選:D【點(diǎn)睛】本題主要考查了求一個(gè)數(shù)的算術(shù)平方根,求平方根,熟練掌握平方根的性質(zhì)是解題的關(guān)鍵.2.(2022沈陽(yáng)中考)下列計(jì)算結(jié)果正確的是()A.a33=a6 B.a6【答案】D【解析】【分析】分別利用冪的乘方法則,同底數(shù)冪的除法,積的乘方法則,完全平方公式分別求出即可.【詳解】A.a(chǎn)3B.a(chǎn)6C.a(chǎn)bD.a(chǎn)+b2故選:D.【點(diǎn)睛】本題考查冪的乘方法則,同底數(shù)冪的除法,積的乘方法則,完全平方公式,熟練掌握相關(guān)計(jì)算法則是解答本題的關(guān)鍵.冪的乘方,底數(shù)不變,指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變,指數(shù)相減;積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘;(a+b)2=3.對(duì)于①x?3xy=x1?3x,②x+3x?3=A.都是因式分解B.都是整式乘法運(yùn)算C.①是因式分解,②是整式乘法運(yùn)算D.①是整式乘法運(yùn)算,②是因式分解【答案】C【解析】【分析】根據(jù)因式分解和整式乘法的定義進(jìn)行判斷即可.【詳解】解:①左邊多項(xiàng)式,右邊整式乘積形式,屬于因式分解;②左邊整式乘積,右邊多項(xiàng)式,屬于整式乘法.故選C.【點(diǎn)睛】本題主要考查了因式分解和整式乘法的定義,掌握解因式分解是整式乘法的逆運(yùn)算成為解題的關(guān)鍵.4.關(guān)于8的敘述,正確的是()A.在數(shù)軸上不存在表示8的點(diǎn)B.8C.8表示8的平方根D.與8最接近的整數(shù)是3【答案】D【解析】【分析】根據(jù)實(shí)數(shù)與數(shù)軸上點(diǎn)的一一對(duì)應(yīng)關(guān)系,二次根式的化簡(jiǎn)以及估算無(wú)理數(shù)的大小逐項(xiàng)進(jìn)行判斷即可.【詳解】解:A.?dāng)?shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng),因此在數(shù)軸上存在表示8的點(diǎn),因此選項(xiàng)A不符合題意;B.因?yàn)?<8<3,因此選項(xiàng)C.8表示8的算術(shù)平方根,因此選項(xiàng)C不符合題意;D.因?yàn)?2=4,,而4<8<9,所以2<8<3,又2.52=6.25,因此故選:D.【點(diǎn)睛】本題考查估算無(wú)理數(shù)的大小,實(shí)數(shù)與數(shù)軸上點(diǎn)的一一對(duì)應(yīng)關(guān)系以及二次根式的化簡(jiǎn),掌握算術(shù)平方根的定義,實(shí)數(shù)的定義以及二次根式的化簡(jiǎn)方法是正確判斷的前提.5.若實(shí)數(shù)m、n滿足等式m2?4m+4+n?4=0.且m、nA.8 B.10 C.8或10 D.12【答案】B【解析】【分析】根據(jù)絕對(duì)值的非負(fù)性,可得m?2=0,n?4=0,從而求出m、n的值,然后分兩種情況,進(jìn)行計(jì)算即可解答.【詳解】∵m2∴m?22∴m?2∴m?2=0,n?4=0,∴m=2,n=4,分兩種情況:當(dāng)4為等腰三角形的腰,2為底時(shí),4+4+2=10,當(dāng)2為等腰三角形的腰,4為底時(shí),∵,∴2,2,4不能組成三角形,∴△ABC的周長(zhǎng)是10故選:B.【點(diǎn)睛】本題考查了絕對(duì)值的非負(fù)性以及等腰三角形的性質(zhì),根據(jù)非負(fù)數(shù)的性質(zhì)求出m、n的值是解題的關(guān)鍵.6.若一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)奇數(shù)的平方差,則稱(chēng)這個(gè)正整數(shù)為“好數(shù)”.下列正整數(shù)中能稱(chēng)為“好數(shù)”的是()A.205 B.250 C.502 D.520【答案】D【解析】【分析】利用平方差公式計(jì)算(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n?2=8n,得到兩個(gè)連續(xù)奇數(shù)構(gòu)造的“好數(shù)”是8的倍數(shù),據(jù)此解答即可.【詳解】解:根據(jù)平方差公式得:(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n×2=8n.所以?xún)蓚€(gè)連續(xù)奇數(shù)構(gòu)造的“好數(shù)”是8的倍數(shù)205,250,502都不能被8整除,只有520能夠被8整除.故選:D.【點(diǎn)睛】本題考查了新概念和平方差公式.熟練掌握平方差公式:a2-b2=(a-b)(a-b)是解題關(guān)鍵.7.如圖,在△ABC中,AB=AC,AD=DE,若∠BAD=18°,∠EDC=12°A.56° B.58° C.60° D.62°【答案】A【解析】【分析】設(shè)∠ADE=x°,則∠B+18°=x°+12°,可用x表示出∠B和∠C,再利用外角的性質(zhì)可表示出∠DAE和∠DEA【詳解】解:設(shè)∠ADE=x°,且∠BAD=18°,∴∠B+18°=x°+12°∴∠B=x°?6°∵AB=AC,∴∠C=∴∠DEA=∵AD=DE,∴∠DEA=在△ADEx+x+6+x+6=180,解得,即∠ADE=56°,故A正確.故選:A.【點(diǎn)睛】本題主要考查了三角形的外角,三角形內(nèi)角和定理,等腰三角形的性質(zhì),解題的關(guān)鍵是根據(jù)三角形的外角性質(zhì)和三角形內(nèi)角和定理列出關(guān)于x的方程.8.一個(gè)正數(shù)b的平方根為a+1和2a?7,則9a+b的立方根是()A.2 B.3 C.9 D.±3【答案】B【解析】【分析】先根據(jù)一個(gè)正數(shù)的兩個(gè)平方根互為相反數(shù)求得a,進(jìn)而求得b,然后代入代數(shù)式9a+b,最后求立方根即可.【詳解】解:∵一個(gè)正數(shù)b的平方根為a+1和2a?7∴a+1+2a?7=0,解得a=2∴b=∴9a+b=27∴9a+b的立方根是3.故選B.【點(diǎn)睛】本題主要考查了平方根和立方根,根據(jù)一個(gè)正數(shù)的兩個(gè)平方根互為相反數(shù)求得a成為解答本題的關(guān)鍵.9.在一張長(zhǎng)為10cm,寬為8cm的矩形紙片上,要剪下一個(gè)腰長(zhǎng)為5cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與矩形的頂點(diǎn)A重合,其余的兩個(gè)頂點(diǎn)都在矩形邊上),這個(gè)等腰三角形有幾種剪法()A.1 B.2 C.3 D.4【答案】B【解析】【詳解】有兩種情況:①當(dāng)∠A為頂角時(shí),如圖1,此時(shí)AE=AF=5cm.②當(dāng)∠A為底角時(shí),如圖2,此時(shí)AE=EF=5cm.故選B.10.如圖,有兩個(gè)正方形A,B,現(xiàn)將B放在A的內(nèi)部得圖甲,將A,B并列放置后構(gòu)造新的正方形得圖乙,若圖甲和圖乙中陰影部分的面積分別為4和30,則正圖乙的邊長(zhǎng)為()A.7 B.8 C.5.6 D.10【答案】B【解析】【分析】設(shè)正方形A的邊長(zhǎng)是a,正方形B的邊長(zhǎng)是b(a>b),根據(jù)圖甲和圖乙中陰影部分的面積分別為4和30,列出等式求得圖乙的面積,最后求得圖乙的邊長(zhǎng).【詳解】解:設(shè)正方形A的邊長(zhǎng)是a,正方形B的邊長(zhǎng)是b(a>b),由題可得圖甲中陰影部分的面積是S甲圖乙中陰影部分的面積是S乙∵圖甲和圖乙中陰影部分的面積分別為4和30,∴S甲=(a?b∴圖乙面積為:(a+b)=(a?b)=4+60=64,∴a+b=8故選:B.【點(diǎn)睛】本題主要考查了完全平方公式的幾何背景,根據(jù)圖甲和圖乙中陰影部分的面積分別為4和30列出等式是解題的關(guān)鍵.二、填空題(每小題3分,共15分)11.寫(xiě)出一個(gè)比大且比10小的整數(shù)是___________.【答案】2或3【解析】【分析】先估算出、10的大小,然后確定范圍在其中的整數(shù)即可.【詳解】∵3<2,3<∴3<2<3<即比大且比10小的整數(shù)為2或3,故答案為:2或3【點(diǎn)睛】本題考查了無(wú)理數(shù)的估算和大小比較,掌握無(wú)理數(shù)估算的方法是正確解答的關(guān)鍵.12.如圖,用兩個(gè)面積為3cm2的小正方形紙片剪拼成一個(gè)大的正方形,則以數(shù)軸上表示1的點(diǎn)A為圓心,以大正方形的邊長(zhǎng)為半徑畫(huà)弧,與數(shù)軸的交點(diǎn)表示的實(shí)數(shù)是____.【答案】1+6,【解析】【分析】根據(jù)大正方形的面積為6cm2可以得出其邊長(zhǎng)為6cm,再在數(shù)軸上找到對(duì)應(yīng)的點(diǎn)表示數(shù)即可.【詳解】解:∵兩個(gè)面積為3cm2的小正方形紙片剪拼成一個(gè)大的正方形,∴大的正方形的面積為6cm2,邊長(zhǎng)為6cm,表示1的點(diǎn)A為圓心,向左向右移6個(gè)單位,∴數(shù)軸的交點(diǎn)表示的實(shí)數(shù)是1+6,,故答案為:1+6,.【點(diǎn)睛】本題考查了數(shù)軸和實(shí)數(shù),根據(jù)面積的關(guān)系得出大正方形的邊長(zhǎng)是解此題的關(guān)鍵.13.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若※,則x的值為_(kāi)____.【答案】1【解析】【分析】根據(jù)題中的定義得到※(x?4)=(x+1)2?(x+1)(x?4)=10,然后利用完全平方公式和多項(xiàng)式相乘法則求出【詳解】解:由題意可知:※(x?4)=(x+1)2∵※,∴(x+1)整理得到:5x=5,∴x=1,故答案為:1.【點(diǎn)睛】此題主要考查了新定義下的實(shí)數(shù)運(yùn)算,以及解一元一次方程的方法,要明確解一元一次方程的一般步驟:去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、系數(shù)化為1.14.如圖,點(diǎn)E,F(xiàn)分別在□ABCD的邊AB,CD的延長(zhǎng)線上,連接EF,分別交AD,BC于G,H.添加一個(gè)條件使△AEG≌△CFH,這個(gè)條件可以是______.(只需寫(xiě)一種情況)【答案】AE=CF(答案不唯一)【解析】【分析】由平行四邊形的性質(zhì)可得:∠A=∠C,證明∠E=∠【詳解】解:∵?∴AB∴∠所以補(bǔ)充:AE=CF,∴△AEG≌△CFH,故答案為:AE=CF(答案不唯一)【點(diǎn)睛】本題考查的是全等三角形的判定與性質(zhì),平行四邊形的性質(zhì),掌握“平行四邊形的性質(zhì)與利用ASA證明三角形全等”是解本題的關(guān)鍵.15.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別是點(diǎn)D,E,當(dāng)AD=3,BE=1時(shí),則DE的長(zhǎng)為_(kāi)_______.【答案】2【解析】【分析】由題意易得∠ACD=∠CBE,易證△ACD≌△CBE,然后可得AD=CE=3,CD=BE=1,進(jìn)而問(wèn)題可求解.【詳解】解:∵AD⊥CE,BE⊥CE,∴∠ADC=∵∠ACB=90°,∴∠ACD+∴∠ACD=∵AC=BC,∴△ACD≌△CBE∴AD=CE=3,CD=BE=1,∴DE=CE?CD=2;故答案為2.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.三、解答題(共8題,滿分75分)16.先化簡(jiǎn),再求值:[(x+y)(x﹣y)+2y(x﹣y)﹣(x﹣y)2]÷(2y),其中x=1,y=2.【答案】-2y+2x,﹣2.【解析】【分析】先算括號(hào)內(nèi)的乘法,合并同類(lèi)項(xiàng),算除法,最后代入求出即可.【詳解】解:[(x+y)(x-y)+2y(x-y)-(x-y)2]÷(2y)=[x2-y2+2xy-2y2-x2+2xy-y2]÷(2y)=(-4y2+4xy)÷(2y)=-2y+2x,當(dāng)x=1,y=2時(shí),原式=-2×2+2×1=-2.17.分解因式.(1)?x(2)x2【答案】(1)?xx?1(2)=【解析】【分析】(1)先提取公因式,然后用完全平方公式即可求得(2)先將完全平方公式展開(kāi),然后再用完全平方公式合并,最后用平方差公式即可【小問(wèn)1詳解】解:?=?x=?x【小問(wèn)2詳解】解:x=====【點(diǎn)睛】本題考查了用提取公因式、平方差公式和完全平方公式分解因式,靈活運(yùn)用恰當(dāng)?shù)姆椒ǚ纸庖蚴绞墙鉀Q問(wèn)題的關(guān)鍵18.如圖,一只螞蟻從點(diǎn)A沿?cái)?shù)軸向右爬了2個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,點(diǎn)A表示?2,設(shè)點(diǎn)B所表示的數(shù)為m(1)m=______.(2)求m+1+(3)在數(shù)軸上還有C、D兩點(diǎn)分別表示實(shí)數(shù)c和d,且有2c+6與d?4互為相反數(shù),求2c+3d的平方跟.【答案】(1)?2(2)2(3)±2【解析】【分析】(1)根據(jù)兩點(diǎn)間的距離公式計(jì)算即可;(2)由(1)可得m+1>0、m?1<0,再利用絕對(duì)值的性質(zhì)化簡(jiǎn)絕對(duì)值號(hào),最后合并同類(lèi)項(xiàng)即可解答;(3)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性質(zhì)求出c、d的值,再代入2c+3d,進(jìn)而求其平方根即可.【小問(wèn)1詳解】解:∵螞蟻從點(diǎn)A沿?cái)?shù)軸向右爬了2個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,點(diǎn)A表示?∴點(diǎn)B表示?∴m=?2故答案為:?2【小問(wèn)2詳解】解:∵m=?∴m+1=?2+2+1=?∴m+1=m+1?=m+1?m+1=2.【小問(wèn)3詳解】解:∵2c+4與d?4互為相反數(shù)∴2c+4∴2c+4=0,d?4=0∴c=?2,d=4∴2c+3d=2×(?2)+3×4=8∴±2c+3d即2c+3d的平方根是±22【點(diǎn)睛】本題主要考查了實(shí)數(shù)與數(shù)軸、絕對(duì)值的性質(zhì)、相反數(shù)的性質(zhì)、非負(fù)數(shù)的性質(zhì)、求一個(gè)數(shù)的平方根等知識(shí)點(diǎn),掌握并靈活運(yùn)用相關(guān)性質(zhì)是解題的關(guān)鍵.19.如圖,四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、.給出下列五個(gè)關(guān)系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤(1)用序號(hào)寫(xiě)出一個(gè)真命題(書(shū)寫(xiě)形式如:如果×××,那么××).并給出證明;(2)用序號(hào)再寫(xiě)出三個(gè)真命題(不要求證明).【答案】(1)如果①②③,那么④⑤(2)見(jiàn)解析【解析】【分析】(1)如果①②③,那么④⑤;先根據(jù)∠1=∠F,,利用AAS證出△AED≌△FEC,得出AD+BC=CF+BC=BF,再根據(jù)∠1=∠2,得出AB=BF,即可證出;(2)根據(jù)命題的結(jié)構(gòu)和有關(guān)性質(zhì)、判定以及真命題的定義,寫(xiě)出命題即可.【小問(wèn)1詳解】解:(1)如果①②③,那么④⑤;理由如下:∵AD∥∴∠1=∠F在△AED和△FEC∠1=∴△AED∴AD=CF,AE=FE,∴AD+BC=CF+BC=BF,∵∠1=∴∠2=∴AB=BF,∴;∵AB=BF,AE=FE,∴∠3=【小問(wèn)2詳解】解:如果①③④,那么②⑤如果①②④,那么③⑤如果①③⑤,那么②④【點(diǎn)睛】本題主要考查了三角形全等的判定和性質(zhì),平行線的性質(zhì),等腰三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握基本的性質(zhì)和判定,靈活應(yīng)用.20.閱讀下列解答過(guò)程:若二次三項(xiàng)式x2-4x+m有一個(gè)因式是x+3,求另一個(gè)因式及m的值.解:設(shè)另一個(gè)因式為x+a則x2-4x+m=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,∴a+3=?43a=m∴∴另一個(gè)因式為x-7,m的值為-21.請(qǐng)依照以上方法解答下面問(wèn)題:(1)已知二次三項(xiàng)式x2+3x-k有一個(gè)因式是x-5,求另一個(gè)因式及k的值;(2)已知二次三項(xiàng)式2x2+5x+k有一個(gè)因式是x+3,求另一個(gè)因式及k的值.【答案】(1)另一個(gè)因式為x+8,k的值為40.(2)另一個(gè)因式為2x-1,k的值為-3.【解析】【分析】(1)類(lèi)比題目所給的解題方法即可解答;(2)根據(jù)二次項(xiàng)2x2的系數(shù)為2,一個(gè)因式為x+3,即可確定另一個(gè)因式的一次項(xiàng)系數(shù)一定是2,再類(lèi)比題目所給的解題方法即可解答.【詳解】(1)設(shè)另一個(gè)因式為(x+a),∴x2+3x-k=(x-5)(x+a),則x2+3x-k=x2+(a-5)x-5a,∴a?5=3?5a=?k解得:a=8,k=40,∴另一個(gè)因式為x+8,k的值為40;(2)設(shè)另一個(gè)因式為(2x+a),∴2x2+5x+k=(x+3)(2x+a),則2x2+5x+k=2x2+(6+a)x+3a,∴a+6=53a=k解得:a=-1,k=-3,∴另一個(gè)因式為2x-1,k的值為-3.【點(diǎn)睛】本題是閱讀理解題,正確讀懂例題,確定另一個(gè)因式的一次項(xiàng)系數(shù)是解本題的關(guān)鍵.21.先閱讀理解下面的例題,再按要求解答下面的問(wèn)題:例題:說(shuō)明代數(shù)式m2+2m+4的值一定是正數(shù).解:m2+2m+4=m2+2m+1+3=(m+1)2+3.∵(m+1)2≥0,∴(m+1)2+3≥3,∴m2+2m+4的值一定是正數(shù).(1)說(shuō)明代數(shù)式﹣a2+6a﹣10的值一定是負(fù)數(shù).(2)設(shè)正方形面積為S1,長(zhǎng)方形的面積為S2,正方形的邊長(zhǎng)為a,如果長(zhǎng)方形的一邊長(zhǎng)比正方形的邊長(zhǎng)少3,另一邊長(zhǎng)為4,請(qǐng)你比較S1與S2的大小關(guān)系,并說(shuō)明理由.【答案】(1)見(jiàn)解析;(2)S1>S2,見(jiàn)解析【解析】【分析】(1)利用配方法,將原式化成含平方代數(shù)式形式﹣(a﹣3)2﹣1,可判斷其值為負(fù)數(shù);(2)用a分別表示出S1與S2,再作差比較即可.【詳解】解:(1)﹣a2+6a﹣10=﹣(a2﹣6a+9)﹣1=﹣(a﹣3)2﹣1,∵(a﹣3)2≥0,∴﹣(a﹣3)2≤0,∴﹣(a﹣3)2﹣1<0,∴代數(shù)式﹣a2+6a﹣10的值一定是負(fù)數(shù);(2)S1>S2,理由是:∵S1=a2,S2=4(a﹣3),∴S1﹣S2=a2﹣4(a﹣3)=a2﹣4a+12=a2﹣4a+4+8=(a﹣2)2+8,∵(a﹣2)2≥0,∴(a﹣2)2+8≥8,∴S1﹣S2>0,∴S1>S2.【點(diǎn)睛】本題主要考查配方法的應(yīng)用,掌握配方法是解題的關(guān)鍵,注意兩數(shù)比較大小時(shí)可用作差法.22.【問(wèn)題】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C作直線l平行于AB.∠EDF=90°,點(diǎn)D在直線L上移動(dòng),角的一邊DE始終經(jīng)過(guò)點(diǎn)B,另一邊DF與AC交于點(diǎn)P,研究DP和DB的數(shù)量關(guān)系.【探究發(fā)現(xiàn)】(1)如圖2,某數(shù)學(xué)興趣小組運(yùn)用從特殊到一般的數(shù)學(xué)思想,發(fā)現(xiàn)當(dāng)點(diǎn)D移動(dòng)到使點(diǎn)P與點(diǎn)C重合時(shí),通過(guò)推理就可以得到DP=DB,請(qǐng)寫(xiě)出證明過(guò)程;【數(shù)學(xué)思考】(2)如圖3,若點(diǎn)P是AC上的任意一點(diǎn)(不含端點(diǎn)A、C),受(1)的啟發(fā),這個(gè)小組過(guò)點(diǎn)D作DG⊥CD交BC于點(diǎn)G,就可以證明DP=DB,請(qǐng)完成證明過(guò)程.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析【解析】【分析】(1)由等腰直角三角形的性質(zhì)可得∠CAB=∠CBA=45°,由平行線的性質(zhì)可得∠CBA=∠DCB=45°,即可證DB=DP;(2)通過(guò)證明△CDP≌△GDB,可得DP=DB.【詳解】證明

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論