版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省寧波市余姚中學2025屆高二數(shù)學第一學期期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則下列說法中一定正確的是()A. B.C. D.2.在中,,,,若該三角形有兩個解,則范圍是()A. B.C. D.3.《九章算數(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積為3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為()A.1升 B.升C.升 D.升4.某中學為了解高三男生的體能情況,通過隨機抽樣,獲得了200名男生的100米體能測試成績(單位:秒),將數(shù)據(jù)按照,,…,分成9組,制成了如圖所示的頻率分布直方圖.規(guī)定成績低于13秒為優(yōu),成績高于14.8秒為不達標.由直方圖推斷,下列選項錯誤的是()A.直方圖中a的值為0.40B.由直方圖估計本校高三男生100米體能測試成績的眾數(shù)為13.75秒C.由直方圖估計本校高三男生100米體能測試成績?yōu)閮?yōu)的人數(shù)為54D.由直方圖估計本校高三男生100米體能測試成績?yōu)椴贿_標的人數(shù)為185.雙曲線:的實軸長為()A. B.C.4 D.26.如圖所示,向量在一條直線上,且則()A. B.C. D.7.在下列函數(shù)中,求導錯誤的是()A., B.,C., D.,8.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.10.已知函數(shù)的定義域為,其導函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.11.“”是“”的()A.充分不必要條件 B.必要不充分條件C充分必要條件 D.既不充分也不必要條件12.數(shù)學中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點到坐標原點0的距離都不超過2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個整點(橫、縱坐標均為整數(shù)的點).則上述結(jié)論中正確的個數(shù)是()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過兩點的直線的傾斜角為,則___________.14.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是___________.15.已知命題:方程表示焦點在軸上的橢圓;命題:方程表示雙曲線.若為真,則實數(shù)的取值范圍為______.16.已知拋物線的焦點F恰好是橢圓的右焦點,且兩條曲線交點的連線過點F,則該橢圓的離心率為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面的距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由18.(12分)冬奧會的全稱是冬季奧林匹克運動會,是世界規(guī)模最大的冬季綜合性運動會,每四年舉辦一屆.第24屆冬奧會將于2022年在中國北京和張家口舉行.為了弘揚奧林匹克精神,增強學生的冬奧會知識,廣安市某中學校從全校隨機抽取50名學生參加冬奧會知識競賽,并根據(jù)這50名學生的競賽成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學生競賽成績的眾數(shù)和中位數(shù).(結(jié)果保留一位小數(shù))19.(12分)已知函數(shù),記f(x)的導數(shù)為f′(x).若曲線f(x)在點(1,f(1))處的切線斜率為﹣3,且x=2時y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值20.(12分)在棱長為4的正方體中,點分別在線段上,點在線段延長線上,,,連接交線段于點.(1)求證平面;(2)求異面直線所成角的余弦值.21.(12分)已知橢圓,其焦點為,,離心率為,若點滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標原點,的重心滿足:,求實數(shù)的取值范圍.22.(10分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】AD選項,舉出反例即可;BC選項,利用不等式的基本性質(zhì)進行判斷.【詳解】當,時,滿足,此時,故A錯誤;因,所以,,,B正確;因為,所以,,故,C錯誤;當,時,滿足,,,所以,D錯誤.故選:B2、D【解析】根據(jù)三角形解得個數(shù)可直接構(gòu)造不等式求得結(jié)果.【詳解】三角形有兩個解,,即.故選:D.3、B【解析】設(shè)出竹子自上而下各節(jié)的容積且為等差數(shù)列,根據(jù)上面4節(jié)的容積共3升,下面3節(jié)的容積共4升列出關(guān)于首項和公差的方程,聯(lián)立即可求出首項和公差,根據(jù)求出的首項和公差,利用等差數(shù)列的通項公式即可求出第5節(jié)的容積【詳解】解:設(shè)竹子自上而下各節(jié)的容積分別為:,,,,且為等差數(shù)列,根據(jù)題意得:,,即①,②,②①得:,解得,把代入①得:,則故選:B【點睛】本題考查學生掌握等差數(shù)列的性質(zhì),靈活運用等差數(shù)列的通項公式化簡求值,屬于中檔題4、D【解析】根據(jù)頻率之和為求得,結(jié)合眾數(shù)、頻率等知識對選項進行分析,從而確定正確答案.【詳解】,解得,A選項正確.眾數(shù)為,B選項正確.成績低于秒的頻率為,人數(shù)為,所以C選項正確.成績高于的頻率為,人數(shù)為人,D選項錯誤.故選:D5、A【解析】根據(jù)雙曲線的幾何意義即可得到結(jié)果.【詳解】因為雙曲線的實軸長為2a,而雙曲線中,,所以其實軸長為故選:A6、D【解析】根據(jù)向量加法的三角形法則得到化簡得到故答案為D7、B【解析】分別求得每個函數(shù)的導數(shù)即可判斷.詳解】;;;.故求導錯誤的是B.故選:B.8、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當時,利用正弦函數(shù)的單調(diào)性知;當時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.9、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當且僅當時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當且僅當,時等號成立.故選:A10、B【解析】令,求出函數(shù)的導數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B11、A【解析】根據(jù)充分條件和必要條件的定義直接判斷即可.【詳解】若,則,即或,推不出;反過來,若,可推出.故“”是“”的充分不必要條件故選:A.12、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點,從而可判斷【詳解】對于①,由,得異號,方程(xy<0)關(guān)于原點及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因為,所以,所以,所以,所以由曲線的對稱性可知曲線C上任一點到坐標原點0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點,,,,而點(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點,由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點,所以曲線C上只有1個整點(0,0),所以④錯誤,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由兩點間的斜率公式及直線斜率的定義即可求解.【詳解】解:因為過兩點的直線的傾斜角為,所以,解得,故答案為:2.14、【解析】計算點漸近線的距離,從而得,由勾股定理計算,由雙曲線定義列式,從而計算得,即可計算出離心率.【詳解】設(shè)雙曲線右焦點為,因為的中點在雙曲線的漸近線上,由可知,,因為為中點,所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)15、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據(jù)橢圓和雙曲線的定義即可解出?!驹斀狻俊邽檎?,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.16、【解析】設(shè)兩條曲線交點為根據(jù)橢圓和拋物線對稱性知,不妨點A在第一象限,由A在拋物線上得,A在橢圓上得.則由條件得:.解得(舍去)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點到平面的距離為,因,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以18、(1)(2)眾數(shù);中位數(shù)【解析】(1)根據(jù)頻率分布直方圖矩形面積和為1列式即可;(2)根據(jù)眾數(shù)即最高矩形中間值,中位數(shù)左右兩邊矩形面積各為0.5列式即可.【小問1詳解】由,得【小問2詳解】50名學生競賽成績的眾數(shù)為設(shè)中位數(shù)為,則解得所以這50名學生競賽成績的中位數(shù)為76.419、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導可得f′(x)的解析式,根據(jù)導數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當﹣1<x<0時,f′(x)>0,f(x)在(﹣1,0)是增函數(shù),當0<x<1時,f′(x)<0,f(x)在(0,1)是減函數(shù),所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣320、(1)證明見解析(2)【解析】(1)由線面平行的判定定理證明;(2)建立空間直角坐標系,用空間向量法求異面直線所成的角【小問1詳解】證明:且,由三角形相似可得,,,又,,又平面,平面平面;【小問2詳解】解:以為坐標原點,分別以為軸建立空間坐標系,如圖.則設(shè)異面直線所成角為,則21、(1)(2)【解析】(1)運用橢圓的離心率公式,結(jié)合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關(guān)系、以及向量數(shù)量積的坐標表示進行求解即可.【小問1詳解】依題意得,點,滿足,可得在橢圓上,可得:,且,解得,,所以橢圓的方程為;【小問2詳解】設(shè),,,,,,當時,,此時A,B關(guān)于y軸對稱,則重心為,由得:,則,此時與橢圓不會有兩交點,故不合題意,故;聯(lián)立與橢圓方程,可得,可得,化為,,,①,設(shè)的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,則,,令,則,可得,,,.【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文丨金太陽百校聯(lián)考(25-71C)江蘇省2025屆高三10月聯(lián)考語文試卷及答案
- 山西省臨汾市翼城校2025屆高二上生物期末教學質(zhì)量檢測模擬試題含解析
- 四川省成都實驗中學2025屆生物高三第一學期期末達標檢測試題含解析
- 2025屆內(nèi)蒙古通遼市科左后旗甘旗卡第二高級中學數(shù)學高三第一學期期末綜合測試試題含解析
- 2025屆云南省保山隆陽區(qū)高二數(shù)學第一學期期末統(tǒng)考試題含解析
- 2025屆天津市新四區(qū)示范校生物高三第一學期期末考試試題含解析
- 河南省南陽市南陽市第一中學2025屆高三英語第一學期期末統(tǒng)考模擬試題含解析
- 2025屆湖北省武漢市漢南區(qū)職教中心高三數(shù)學第一學期期末經(jīng)典模擬試題含解析
- 2025屆安徽省滁州市明光中學語文高三上期末檢測試題含解析
- 2024年預制箱梁勞務(wù)分包合同
- 2024年部編新改版語文小學一年級上冊期中考試檢測題(有答案)
- GB/T 44109-2024信息技術(shù)大數(shù)據(jù)數(shù)據(jù)治理實施指南
- 《扣件式鋼管腳手架安全技術(shù)規(guī)范》JGJ130-2023
- 形物代與名物代練習題2頁
- 打拔機施工長鋼護筒專項施工方案
- 畢業(yè)設(shè)計(論文)叉車液壓系統(tǒng)設(shè)計
- 研發(fā)項目立項管理流程總體思路.doc
- 榆林市第十二中學第二個五年發(fā)展規(guī)劃
- 廣西珍貴樹種發(fā)展規(guī)劃(2011~2020年)講解
- 盤縣紅果鎮(zhèn)上紙廠煤礦(技改)45萬ta項目環(huán)境影響評價報告書
- 李居明大師趣談十二生肖
評論
0/150
提交評論