湖北省第五屆測評活動2025屆高二上數(shù)學(xué)期末檢測試題含解析_第1頁
湖北省第五屆測評活動2025屆高二上數(shù)學(xué)期末檢測試題含解析_第2頁
湖北省第五屆測評活動2025屆高二上數(shù)學(xué)期末檢測試題含解析_第3頁
湖北省第五屆測評活動2025屆高二上數(shù)學(xué)期末檢測試題含解析_第4頁
湖北省第五屆測評活動2025屆高二上數(shù)學(xué)期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省第五屆測評活動2025屆高二上數(shù)學(xué)期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.2.在數(shù)列中,,則等于A. B.C. D.3.命題:,否定是()A., B.,C., D.,4.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.5.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.6.已知橢圓的離心率為,左、右焦點分別為、,過作軸的平行線交橢圓于、兩點,為坐標(biāo)原點,雙曲線的虛軸長為,且以、為頂點,以直線、為漸近線,則橢圓的短軸長為()A. B.C. D.7.過雙曲線的左焦點作x軸的垂線交曲線C于點P,為右焦點,若,則雙曲線的離心率為()A. B.C. D.8.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.9.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.410.《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機調(diào)查了100學(xué)生,其中閱讀過《西游記》或《紅樓夢》的學(xué)生共有90位,閱讀過《紅樓夢》的學(xué)生共有80位,閱讀過《西游記》且閱讀過《紅樓夢》的學(xué)生共有60位,則該校閱讀過《西游記》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計值為A. B.C. D.11.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.12.幾何學(xué)史上有一個著名的米勒問題:“設(shè)點、是銳角的一邊上的兩點,試在邊上找一點,使得最大的.”如圖,其結(jié)論是:點為過、兩點且和射線相切的圓的切點.根據(jù)以上結(jié)論解決一下問題:在平面直角坐標(biāo)系中,給定兩點,,點在軸上移動,當(dāng)取最大值時,點的橫坐標(biāo)是()A.B.C.或D.或二、填空題:本題共4小題,每小題5分,共20分。13.若過點和的直線與直線平行,則_______14.設(shè)變量x,y滿足約束條件則的最大值為___________.15.直線的傾斜角為_______________.16.已知拋物線的焦點為F,A為拋物線C上一點.以F為圓心,F(xiàn)A為半徑的圓交拋物線C的準(zhǔn)線于B,D兩點,A,F(xiàn),B三點共線,且,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在棱長為的正方體中,、分別為線段、的中點.(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.18.(12分)已知橢圓C:的左右焦為,,點是該橢圓上任意一點,當(dāng)軸時,,(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)記,求實數(shù)m的最大值19.(12分)已知數(shù)列的前n項和(1)求的通項公式;(2)若數(shù)列的前n項和,求數(shù)列的前n項和20.(12分)如圖,在四棱錐中,底面ABCD是邊長為1的菱形,且,側(cè)棱,,M是PC的中點,設(shè),,(1)試用,,表示向量;(2)求BM的長21.(12分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標(biāo)準(zhǔn)方程.22.(10分)已知等比數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時取等號,故選:C.2、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點睛:對于含有的數(shù)列,我們看作擺動數(shù)列,往往逐一列舉出來觀察前面有限項的規(guī)律3、D【解析】根據(jù)給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D4、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運用余弦定理得到、的關(guān)系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.5、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認(rèn)真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.6、C【解析】不妨取點在第一象限,根據(jù)橢圓與雙曲線的幾何性質(zhì),以及它們之間的聯(lián)系,可得點的坐標(biāo),再將其代入橢圓的方程中,解之即可【詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點在第一象限,則的坐標(biāo)為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長為故選:7、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.8、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標(biāo)為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.9、D【解析】利用等差數(shù)列下標(biāo)和的性質(zhì)求值即可.【詳解】由等差數(shù)列下標(biāo)和性質(zhì)知:.故選:D10、C【解析】根據(jù)題先求出閱讀過西游記人數(shù),進而得解.【詳解】由題意得,閱讀過《西游記》的學(xué)生人數(shù)為90-80+60=70,則其與該校學(xué)生人數(shù)之比為70÷100=0.7.故選C【點睛】本題考查容斥原理,滲透了數(shù)據(jù)處理和數(shù)學(xué)運算素養(yǎng).采取去重法,利用轉(zhuǎn)化與化歸思想解題11、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.12、A【解析】根據(jù)米勒問題的結(jié)論,點應(yīng)該為過點、的圓與軸的切點,設(shè)圓心的坐標(biāo)為,寫出圓的方程,并將點、的坐標(biāo)代入可求出點的橫坐標(biāo).【詳解】解:設(shè)圓心的坐標(biāo)為,則圓的方程為,將點、的坐標(biāo)代入圓的方程得,解得或(舍去),因此,點的橫坐標(biāo)為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩直線的位置關(guān)系求解.【詳解】因為過點和的直線與直線平行,所以,解得,故答案為:314、【解析】根據(jù)線性約束條件畫出可行域,把目標(biāo)函數(shù)轉(zhuǎn)化為,然后根據(jù)直線在軸上截距最大時即可求出答案.【詳解】畫出可行域,如圖,由,得,由圖可知,當(dāng)直線過點時,有最大值,且最大值為.故答案為:.15、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設(shè)直線的傾斜角為,則,解得,即換線的傾斜角為.【點睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關(guān)系,合理準(zhǔn)確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.16、2【解析】求得拋物線的焦點和準(zhǔn)線方程,由,,三點共線,推得,由三角形的中位線性質(zhì)可得到準(zhǔn)線的距離,可得的值【詳解】拋物線的焦點為,,準(zhǔn)線方程為,因為,,三點共線,可得為圓的直徑,如圖示:設(shè)準(zhǔn)線交x軸于E,所以,則,由拋物線的定義可得,又是的中點,所以到準(zhǔn)線的距離為,故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因為平面,所以,平面,,所以,直線到平面的距離為.18、(1)(2)【解析】(1)利用橢圓的定義及勾股定理可求解;(2)問題轉(zhuǎn)化為在軸截距的問題,臨界條件為直線與橢圓相切,求解即可.【小問1詳解】因為,,所以,∴,所以橢圓標(biāo)準(zhǔn)方程為:【小問2詳解】要求的最值,即求直線在軸截距的最值,可知當(dāng)直線與橢圓相切時,m取得最值.聯(lián)立方程:,整理得,解得所以實數(shù)m的最大值為19、(1),;(2),.【解析】(1)根據(jù)的關(guān)系可得,根據(jù)等比數(shù)列的定義寫出的通項公式,進而可得的通項公式;(2)利用的關(guān)系求的通項公式,結(jié)合(1)結(jié)論可得,再應(yīng)用分組求和、錯位相消法求的前n項和【小問1詳解】.①當(dāng)時,,可得當(dāng)時,.②①-②得,則,而a1-1=1不為零,故是首項為1,公比為2的等比數(shù)列,則∴數(shù)列的通項公式為,【小問2詳解】∵,∴當(dāng)時,,當(dāng)時,,又也適合上式,∴,∴,令,,則,又,∴20、(1);(2).【解析】(1)將,代入中化簡即可得到答案;(2)利用,結(jié)合向量數(shù)量積運算律計算即可.【小問1詳解】是PC的中點,,,,,結(jié)合,,,得.【小問2詳解】∵底面ABCD是邊長為1的菱形,且,側(cè)棱,,,,,.,.由(1)知,,,即BM的長等于.21、(1),(2)【解析】(1)根據(jù)已知條件建立關(guān)于a、b、c的方程組可解;(2)巧設(shè)與已知雙曲線同漸近線的雙曲線方程為可得.【小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論