2025屆江西省贛州市寧都縣第三中學高一數(shù)學第一學期期末復習檢測試題含解析_第1頁
2025屆江西省贛州市寧都縣第三中學高一數(shù)學第一學期期末復習檢測試題含解析_第2頁
2025屆江西省贛州市寧都縣第三中學高一數(shù)學第一學期期末復習檢測試題含解析_第3頁
2025屆江西省贛州市寧都縣第三中學高一數(shù)學第一學期期末復習檢測試題含解析_第4頁
2025屆江西省贛州市寧都縣第三中學高一數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆江西省贛州市寧都縣第三中學高一數(shù)學第一學期期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線、、與平面、,下列命題正確的是()A若,則 B.若,則C.若,則 D.若,則2.在特定條件下,籃球賽中進攻球員投球后,籃球的運行軌跡是開口向下的拋物線的一部分.“蓋帽”是一種常見的防守手段,防守隊員在籃球上升階段將球攔截即為“蓋帽”,而防守隊員在籃球下降階段將球攔截則屬“違規(guī)”.對于某次投籃而言,如果忽略其他因素的影響,籃球處于上升階段的水平距離越長,則被“蓋帽”的可能性越大.收集幾次籃球比賽的數(shù)據(jù)之后,某球員投籃可以簡化為下述數(shù)學模型:如圖所示,該球員的投籃出手點為P,籃框中心點為Q,他可以選擇讓籃球在運行途中經(jīng)過A,B,C,D四個點中的某一點并命中Q,忽略其他因素的影響,那么被“蓋帽”的可能性最大的線路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q3.在中,“”是“”的()A.充要條件 B.充分非必要條件C必要非充分條件 D.既非充分又非必要條件4.已知角,且,則()A. B.C. D.5.函數(shù)與的圖象在上的交點有()A.個 B.個C.個 D.個6.函數(shù)的最小正周期為()A. B.C. D.7.已知,且在區(qū)間有最大值,無最小值,則=()A B.C. D.8.工藝扇面是中國書面一種常見的表現(xiàn)形式.某班級想用布料制作一面如圖所示的扇面.已知扇面展開的中心角為,外圓半徑為,內(nèi)圓半徑為.則制作這樣一面扇面需要的布料為().A. B.C. D.9.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍為()A. B.C. D.10.全稱量詞命題“,”的否定為()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)(1)當時,求的值域;(2)若,且,求的值;12.計算:___________.13.若不等式的解集為,則______,______14.已知函數(shù),是定義在區(qū)間上的奇函數(shù),則_________.15.命題“,”的否定是_________.16.,,則的值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,已知點,是以為底邊的等腰三角形,點在直線:上(1)求邊上的高所在直線的方程;(2)求的面積18.如圖所示,已知長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求證:直線CM⊥面DFN;(2)求點C到平面FDM的距離19.已知函數(shù),,設(其中表示中的較小者).(1)在坐標系中畫出函數(shù)的圖像;(2)設函數(shù)的最大值為,試判斷與1的大小關系,并說明理由.(參考數(shù)據(jù):,,)20.已知直線(1)求直線的斜率;(2)若直線m與平行,且過點,求m的方程.21.如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,點E和F分別為BC和A1C的中點(1)求證:EF∥平面A1B1BA;(2)求直線A1B1與平面BCB1所成角的大?。?/p>

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用線線,線面,面面的位置關系,以及垂直,平行的判斷和性質(zhì)判斷選項.【詳解】A.若,則或異面,故A不正確;B.缺少垂直于交線這個條件,不能推出,故B不正確;C.由垂直關系可知,或相交,或是異面,故C不正確;D.因,所以平面內(nèi)存在直線,若,則,且,所以,故D正確.故選:D2、B【解析】定性分析即可得到答案【詳解】B、D兩點,橫坐標相同,而D點的縱坐標大于B點的縱坐標,顯然,B點上升階段的水平距離長;A、B兩點,縱坐標相同,而A點的橫坐標小于B點的橫坐標,等經(jīng)過A點的籃球運行到與B點橫坐標相同時,顯然在B點上方,故B點上升階段的水平距離長;同理可知C點路線優(yōu)于A點路線,綜上:P→B→Q是被“蓋帽”的可能性最大的線路.故選:B3、A【解析】結合三角形內(nèi)角與充分、必要條件的知識確定正確選項.【詳解】在中,,所以,所以在中,“”是“”的充要條件.故選:A4、A【解析】依題意可得,再根據(jù),即可得到,從而求出,再根據(jù)同角三角函數(shù)的基本關系求出,最后利用誘導公式計算可得;【詳解】解:因為,所以,因為,所以且,所以,即,所以,所以,所以;故選:A5、B【解析】在上解出方程,得出方程解的個數(shù)即可.詳解】當時,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有個.故選B.【點睛】本題考查正切函數(shù)與正弦函數(shù)圖象的交點個數(shù),可以利用圖形法解決,也轉(zhuǎn)化為方程根的個數(shù)來處理,考查計算能力,屬于中等題.6、C【解析】根據(jù)正弦型函數(shù)周期的求法即可得到答案.【詳解】故選:C.7、C【解析】結合題中所給函數(shù)的解析式可得:直線為的一條對稱軸,∴,∴,又,∴當k=1時,.本題選擇C選項.8、B【解析】由扇形的面積公式,可得制作這樣一面扇面需要的布料.【詳解】解:根據(jù)題意,由扇形的面積公式可得:制作這樣一面扇面需要的布料為.故選:B.【點睛】本題考查扇形的面積公式,考查學生的計算能力,屬于基礎題.9、D【解析】利用二次函數(shù)單調(diào)性,列式求解作答.【詳解】函數(shù)的單調(diào)遞增區(qū)間是,依題意,,所以,即實數(shù)的取值范圍是.故選:D10、C【解析】由命題的否定的概念判斷.否定結論,存在量詞與全稱量詞互換.【詳解】根據(jù)全稱量詞命題的否定是存在量詞命題,可得命題“”的否定是“”故選:C.【點睛】本題考查命題的否定,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、(1)(2)【解析】(1)化簡函數(shù)解析式為,再利用余弦函數(shù)的性質(zhì)求函數(shù)的值域即可;(2)由已知得,利用同角之間的關系求得,再利用湊角公式及兩角差的余弦公式即可得解.【小問1詳解】,,利用余弦函數(shù)的性質(zhì)知,則【小問2詳解】,又,,則則12、7【解析】直接利用對數(shù)的運算法則以及指數(shù)冪的運算法則化簡即可.【詳解】.故答案為:7.13、①.②.【解析】由題設知:是的根,應用根與系數(shù)關系即可求參數(shù)值.【詳解】由題設,是的根,∴,即,.故答案為:,.14、27【解析】由于奇函數(shù)的定義域必然關于原點對稱,可得m的值,再求【詳解】由于奇函數(shù)的定義域必然關于原點對稱∴m=3,故f(m)=故答案為27【點睛】本題主要考查函數(shù)的奇偶性,利用了奇函數(shù)的定義域必然關于原點對稱,屬于基礎題15、,##【解析】根據(jù)全稱量詞命題的否定即可得出結果.【詳解】由題意知,命題“”的否定為:.故答案為:.16、#0.3【解析】利用“1”的代換,構造齊次式方程,再代入求解.【詳解】,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、解:(Ⅰ)x-y-1=0;(Ⅱ)2【解析】(1)由題意,求得直線的斜率,從而得到,利用直線的點斜式方程,即可求解直線的方程;(2)由,求得,利用兩點間的距離公式和三角形的面積公式,即可求得三角形的面積.試題解析:(Ⅰ)由題意可知,為的中點,∴,且,∴所在直線方程為,即.(Ⅱ)由得∴∴,∴∴18、(1)見解析;(2)【解析】(1)推導出DN⊥CM,CM⊥FN,由此能證明CM⊥平面DFN.(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標系,利用向量法能求出點C到平面FDM的距離【詳解】證明:(1)∵長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因為長方形ABCD,DC=CN=2,所以四邊形DCNM是正方形,∴DN⊥CM,因為平面MNFE⊥平面ABCD,F(xiàn)N⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因為CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標系,則C(2,-2,0),D(0,-2,0),F(xiàn)(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),設平面FDM的法向量=(x,y,z),則,取x=1,得=(1,0,-1),∴點C到平面FDM的距離d===【點睛】本題考查線面垂直的證明,考查點到平面的距離的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數(shù)形結合思想,是中檔題19、(1)見解析;(2)見解析.【解析】(1)根據(jù)(其中表示中的較小者),即可畫出函數(shù)的圖像;(2)由題意可知,為函數(shù)與圖像交點的橫坐標,即,設,根據(jù)零點存在定理及函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,可得有唯一零點,再由函數(shù)在上單調(diào)遞減,即可得證.試題解析:(1)作出函數(shù)的圖像如下:(2)由題意可知,為函數(shù)與圖像交點的橫坐標,且,∴.設,易知即為函數(shù)零點,∵,,∴,又∵函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,∴有唯一零點∵函數(shù)在上單調(diào)遞減,∴,即.20、(1);(2).【解析】(1)將直線變形為斜截式即可得斜率;(2)由平行可得斜率,再由點斜式可得結果.【詳解】(1)由,可得,所以斜率為;(2)由直線m與平行,且過點,可得m的方程為,整理得:.21、(1)詳見解析(2)30°【解析】(1)連接A1B,結合三角形中位線定理,得到平行,結合直線與平面平行,的判定定理,即可.(2)取的中點N,連接,利用直線與平面垂直判定定理,得到平面,找出即為所求的角,解三角形,計算該角的大小,即可【詳解】解:(1)證明:如圖,連接A1B.在△A1BC中,因為E和F分別是BC和A1C的中點,所以EF∥BA1.又EF?平面A1B1BA,所以EF∥平面A1B1BA(2)解:因為AB=AC,E為BC的中點,所以AE⊥BC.因為AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,.取BB1的中點M和B1C的中點N,連接A1M,A1N,NE.因為N和E分別為B1C和BC的中點,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因為AE⊥平面BCB1,所以A1N⊥平面BCB1,從而∠A1B1N為直線A1B1與平面BCB1所成的角.在△ABC中,可得AE=2,所以A1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論