版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省舒蘭一中,蛟河一中等百校聯(lián)盟高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.2.在正四面體中,棱長為2,且E是棱AB中點(diǎn),則的值為A. B.1C. D.3.設(shè)函數(shù),若為奇函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.4.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.5.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在平行六面體中,,,,則()A. B.5C. D.37.已知橢圓的左右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若、、是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)到軸的距離為A B.4C. D.8.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染)A.20天 B.24天C.28天 D.32天9.設(shè)變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.1310.設(shè)是雙曲線的兩個(gè)焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在上且,則的面積為()A. B.3C. D.211.某公司有320名員工,將這些員工編號為1,2,3,…,320,從這些員工中使用系統(tǒng)抽樣的方法抽取20人進(jìn)行“學(xué)習(xí)強(qiáng)國”的問卷調(diào)查,若54號被抽到,則下面被抽到的是()A.72號 B.150號C.256號 D.300號12.設(shè)R,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.從1,3,5,7中任取2個(gè)數(shù)字,從0,2,4,6,8中任取2個(gè)數(shù)字,組成沒有重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)一共有___________個(gè).(用數(shù)字作答)14.已知直線和平面,且;①若異面,則至少有一個(gè)與相交;②若垂直,則至少有一個(gè)與垂直;對于以上命題中,所有正確的序號是___________.15.已知,分別是橢圓和雙曲線的離心率,,是它們的公共焦點(diǎn),M是它們的一個(gè)公共點(diǎn),且,則的最大值為______16.如圖,橢圓的左右焦點(diǎn)為,,以為圓心的圓過原點(diǎn),且與橢圓在第一象限交于點(diǎn),若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,其離心率,且橢圓C經(jīng)過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)M作兩條不同的直線與橢圓C分別交于點(diǎn)A,B(均異于點(diǎn)M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.18.(12分)如圖,扇形AOB的半徑為2,圓心角,點(diǎn)C為弧AB上一點(diǎn),平面AOB且,點(diǎn)且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小19.(12分)已知各項(xiàng)為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面積為,求a+c的值21.(12分)已知的展開式中,第4項(xiàng)的系數(shù)與倒數(shù)第4項(xiàng)的系數(shù)之比為.(1)求m的值;(2)求展開式中所有項(xiàng)的系數(shù)和與二項(xiàng)式系數(shù)和.22.(10分)已知拋物線C:,直線l經(jīng)過點(diǎn),且與拋物線C交于M,N兩點(diǎn),其中.(1)若,且,求點(diǎn)M的坐標(biāo);(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,若存在,請求出正數(shù)m,若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計(jì)算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).2、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點(diǎn),可得,代入,利用數(shù)量積運(yùn)算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點(diǎn)故選:【點(diǎn)睛】本題考查空間向量的線性運(yùn)算,考查立體幾何中的垂直關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.3、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式即可求出結(jié)果【詳解】函數(shù)的定義域?yàn)椋魹槠婧瘮?shù),則則,即,所以,所以函數(shù),可得;所以曲線在點(diǎn)處的切線的斜率為,則曲線在點(diǎn)處的切線方程為,即故選:C4、C【解析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據(jù)離心率即可求出漸近線斜率得解.【詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C5、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因?yàn)楹瘮?shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.6、B【解析】由,則結(jié)合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.7、D【解析】設(shè)橢圓短軸的一個(gè)端點(diǎn)為根據(jù)橢圓方程求得c,進(jìn)而判斷出,即得或令,進(jìn)而可得點(diǎn)P到x軸的距離【詳解】解:設(shè)橢圓短軸的一個(gè)端點(diǎn)為M由于,,;,只能或令,得,故選D【點(diǎn)睛】本題主要考查了橢圓的基本應(yīng)用考查了學(xué)生推理和實(shí)際運(yùn)算能力是基礎(chǔ)題8、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要24天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡化運(yùn)算過程9、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點(diǎn)時(shí)截距最小,求出點(diǎn)A坐標(biāo),代入目標(biāo)式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點(diǎn)時(shí)截距最小,由,得,則.故選:C.10、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計(jì)算即可.【詳解】由已知,不妨設(shè),則,因?yàn)?,所以點(diǎn)在以為直徑的圓上,即是以P為直角頂點(diǎn)的直角三角形,故,即,又,所以,解得,所以故選:B【點(diǎn)晴】本題考查雙曲線中焦點(diǎn)三角形面積的計(jì)算問題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.11、B【解析】根據(jù)系統(tǒng)抽樣分成20個(gè)小組,每組16人中抽一人,故抽到的序號相差16的整數(shù)倍,即可求解.【詳解】∵用系統(tǒng)抽樣的方法從320名員工中抽取一個(gè)容量為20的樣本∴,即每隔16人抽取一人∵54號被抽到∴下面被抽到的是54+16×6=150號,而其他選項(xiàng)中的數(shù)字不滿足與54相差16的整數(shù)倍,故答案為:B故選:B12、A【解析】根據(jù)不等式性質(zhì)判斷即可.【詳解】若“”,則成立;反之,若,當(dāng),時(shí),不一定成立.如,但.故“”是“”的充分不必要條件.故答案為:A.【點(diǎn)睛】本題考查充分條件、必要調(diào)價(jià)的判斷,考查不等式與不等關(guān)系,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1296【解析】根據(jù)取出的數(shù)字是否含有零,分類討論,若不含零,則有四位數(shù)個(gè),若含有零,則有四位數(shù)個(gè),再根據(jù)分類加法計(jì)數(shù)原理即可求出【詳解】若取出的數(shù)字中不含零,則有四位數(shù)個(gè);若取出的數(shù)字中含零,則有四位數(shù)個(gè);所以,這樣的四位數(shù)有個(gè)故答案為:129614、①②【解析】假設(shè)與都不相交得到,得到①正確,若不垂直,上取一點(diǎn),作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點(diǎn),作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.15、【解析】利用橢圓、雙曲線的定義以及余弦定理找到的關(guān)系,然后利用三角換元求最值即可.【詳解】解析:設(shè)橢圓的長半軸為a,雙曲線的實(shí)半軸為,半焦距為c,設(shè),,,因?yàn)?,所以由余弦定理可得,①在橢圓中,,①化簡為,即,②在雙曲線中,,①化簡為,即,③聯(lián)立②③得,,即,記,,,則,當(dāng)且僅當(dāng),即,時(shí)取等號故答案為:.16、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點(diǎn)睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,證明見解析【解析】(1)根據(jù)離心率及橢圓上的點(diǎn)可求解;(2)根據(jù)題意分別設(shè)出直線MA、MB,與橢圓聯(lián)立后得到相關(guān)點(diǎn)的坐標(biāo),再通過斜率公式計(jì)算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過點(diǎn),則②,由①②解得a=6,b=2,所以橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)直線MA的斜率為k,點(diǎn),因?yàn)椤螦MB的平分線與y軸平行,所以直線MA與MB的斜率互為相反數(shù),則直線MB的斜率為-k.聯(lián)立直線MA與橢圓方程,得整理,得,所以,同理可得,所以,又所以為定值.18、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點(diǎn),連接MN,利用余弦定理可求得,,的長度,進(jìn)而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當(dāng)空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點(diǎn),連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,所以,,設(shè)平面的一個(gè)法向量為,則,可??;設(shè)平面的一個(gè)法向量為,則,可取,,平面與平面所成二面角的正弦值為19、(1);(2)【解析】(1)根據(jù)條件求出即可;(2),然后利用等差數(shù)列的求和公式求出答案即可.【詳解】(1)且,,(2)20、(1)(2)【解析】(1)利用正弦定理化簡,通過兩角和與差的三角函數(shù)求出,即可得到結(jié)果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因?yàn)閎cosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點(diǎn)睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關(guān)三角形的題目時(shí),要有意識地考慮用哪個(gè)定理更合適,或是兩個(gè)定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到21、(1)(2)所有項(xiàng)的系數(shù)和為,二項(xiàng)式系數(shù)和為【解析】(1)寫出展開式的通項(xiàng),求出其第4項(xiàng)系數(shù)和倒數(shù)第4項(xiàng)系數(shù),列出方程即可求出m的值;(2)令x=1即可求所有展開項(xiàng)系數(shù)之和,二項(xiàng)式系數(shù)之和為2m.【小問1詳解】展開式的通項(xiàng)為:,∴展開式中第4項(xiàng)的系數(shù)為,倒數(shù)第4項(xiàng)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學(xué)校體育工作計(jì)劃例文(三篇)
- 2024年安檢部部長崗位責(zé)任制范文(二篇)
- 2024年單間房屋租賃合同參考范文(二篇)
- 2024年宅基地轉(zhuǎn)讓合同常用版(二篇)
- 2024年學(xué)前班班務(wù)工作計(jì)劃范文(二篇)
- 2024年小學(xué)四年級心理健康教育計(jì)劃范本(四篇)
- 2024年基本公共衛(wèi)生服務(wù)監(jiān)督管理制度(二篇)
- 2024年售后服務(wù)合同樣本(二篇)
- 2024年地測防治水部職責(zé)制度(四篇)
- 2024年學(xué)校安全工作十項(xiàng)制度(三篇)
- 孕期常見問題及處理(課件)
- 中醫(yī)治療“傷筋”醫(yī)案57例
- 高中生物-特異性免疫(一)教學(xué)課件設(shè)計(jì)
- 王陽明心學(xué)及其影響-王陽明心學(xué)及其當(dāng)代意義共93課件
- 2023高一上學(xué)期班主任工作計(jì)劃范文(3篇)
- 自治區(qū)級實(shí)驗(yàn)教學(xué)示范中心申請書
- 違法建筑處置法律解讀培訓(xùn)PPT
- 現(xiàn)行校長負(fù)責(zé)制的弊端探析
- 管道熱損失的計(jì)算方法
- 九招致勝課件完整版
- 2023年白銀有色集團(tuán)招聘筆試題庫及答案解析
評論
0/150
提交評論