版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省皖江名校2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.12.把紅、黑、藍(lán)、白4張紙牌隨機(jī)地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”的關(guān)系是()A.既不互斥也不對(duì)立 B.互斥又對(duì)立C.互斥但不對(duì)立 D.對(duì)立3.已知函數(shù),若,,則實(shí)數(shù)的取值范圍是A. B.C. D.4.直線分別與軸,軸交于,兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是A. B.C. D.5.已知,命題“若,則,全為0”的否命題是()A.若,則,全不為0. B.若,不全為0,則.C.若,則,不全為0. D.若,則,全不為0.6.在中,若,,則外接圓半徑為()A. B.C. D.7.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.8.現(xiàn)有甲、乙、丙、丁、戊五位同學(xué),分別帶著A、B、C、D、E五個(gè)不同的禮物參加“抽盲盒”學(xué)游戲,先將五個(gè)禮物分別放入五個(gè)相同的盒子里,每位同學(xué)再分別隨機(jī)抽取一個(gè)盒子,恰有一位同學(xué)拿到自己禮物的概率為()A. B.C. D.9.若,則的值為()A.或 B.或C.1 D.-110.概率論起源于賭博問(wèn)題.法國(guó)著名數(shù)學(xué)家布萊爾帕斯卡遇到兩個(gè)賭徒向他提出的賭金分配問(wèn)題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當(dāng)甲贏了局,乙贏了局,不再賭下去時(shí),賭金如何分配?假設(shè)每局兩人輸贏的概率各占一半,每局輸贏相互獨(dú)立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎11.已知關(guān)于的不等式的解集是,則的值是()A. B.5C. D.712.在數(shù)列中,,則()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量是直線l的一個(gè)方向向量,向量是平面的一個(gè)法向量,若直線平面,則實(shí)數(shù)m的值為_(kāi)_____14.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________15.如果橢圓上一點(diǎn)P到焦點(diǎn)的距離等于6,則點(diǎn)P到另一個(gè)焦點(diǎn)的距離為_(kāi)___16.已知橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,且直線l與橢圓交于C,D兩點(diǎn),若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)冬奧會(huì)的全稱是冬季奧林匹克運(yùn)動(dòng)會(huì),是世界規(guī)模最大的冬季綜合性運(yùn)動(dòng)會(huì),每四年舉辦一屆.第24屆冬奧會(huì)將于2022年在中國(guó)北京和張家口舉行.為了弘揚(yáng)奧林匹克精神,增強(qiáng)學(xué)生的冬奧會(huì)知識(shí),廣安市某中學(xué)校從全校隨機(jī)抽取50名學(xué)生參加冬奧會(huì)知識(shí)競(jìng)賽,并根據(jù)這50名學(xué)生的競(jìng)賽成績(jī),繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學(xué)生競(jìng)賽成績(jī)的眾數(shù)和中位數(shù).(結(jié)果保留一位小數(shù))18.(12分)在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),且離心率.(1)求橢圓的方程;(2)直線的斜率為,直線l與橢圓交于兩點(diǎn),求的面積的最大值.19.(12分)已知正項(xiàng)等差數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和20.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(diǎn)(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積21.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知直線.(1)若,求直線與直線的交點(diǎn)坐標(biāo);(2)若直線與直線垂直,求a的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因?yàn)閮芍本€垂直,所以,解得:或.故選:C2、C【解析】根據(jù)互斥事件、對(duì)立事件的定義可得答案.【詳解】把紅、黑、藍(lán)、白4張紙牌隨機(jī)地分發(fā)給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”不能同時(shí)發(fā)生,但能同時(shí)不發(fā)生,所以它們的關(guān)系是互斥但不對(duì)立.故選:C.3、A【解析】函數(shù),若,,可得,解得或,則實(shí)數(shù)的取值范圍是,故選A.4、A【解析】分析:先求出A,B兩點(diǎn)坐標(biāo)得到再計(jì)算圓心到直線距離,得到點(diǎn)P到直線距離范圍,由面積公式計(jì)算即可詳解:直線分別與軸,軸交于,兩點(diǎn),則點(diǎn)P在圓上圓心為(2,0),則圓心到直線距離故點(diǎn)P到直線的距離的范圍為則故答案選A.點(diǎn)睛:本題主要考查直線與圓,考查了點(diǎn)到直線的距離公式,三角形的面積公式,屬于中檔題5、C【解析】根據(jù)四種命題的關(guān)系求解.【詳解】因?yàn)榉衩}是否定原命題的條件和結(jié)論,所以命題“若,則,全為0”的否命題是:若,則,不全為0,故選:C6、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A7、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運(yùn)算法則化簡(jiǎn).【詳解】因?yàn)椋裕瑒t故復(fù)數(shù)的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運(yùn)算,按照復(fù)數(shù)的運(yùn)算法則化簡(jiǎn)計(jì)算即可,較簡(jiǎn)單.8、D【解析】利用排列組合知識(shí)求出每位同學(xué)再分別隨機(jī)抽取一個(gè)盒子,恰有一位同學(xué)拿到自己禮物的情況個(gè)數(shù),以及五人抽取五個(gè)禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來(lái)的四人分為兩種情況,一種是兩兩一對(duì),兩個(gè)人都拿到對(duì)方的禮物,有種情況,另一種是四個(gè)人都拿到另外一個(gè)人的禮物,不是兩兩一對(duì),都拿到對(duì)方的情況,由種情況,綜上:共有種情況,而五人抽五個(gè)禮物總數(shù)為種情況,故恰有一位同學(xué)拿到自己禮物的概率為.故選:D9、B【解析】求出函數(shù)的導(dǎo)數(shù),由方程求解即可.【詳解】,,解得或,故選:B10、A【解析】利用獨(dú)立事件計(jì)算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.11、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因?yàn)殛P(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D12、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計(jì)算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】由已知可得,即,計(jì)算即可得出結(jié)果.【詳解】因?yàn)槭侵本€的一個(gè)方向向量,是平面的一個(gè)法向量,且直線平面,所以,所以,解得.故答案為:-2.14、【解析】先求出直線所過(guò)的定點(diǎn),當(dāng)該定點(diǎn)為弦的中點(diǎn)時(shí)弦長(zhǎng)最短,利用點(diǎn)斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過(guò)定點(diǎn)圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.15、14【解析】根據(jù)橢圓的定義及橢圓上一點(diǎn)P到焦點(diǎn)的距離等于6,可得的長(zhǎng).【詳解】解:根據(jù)橢圓的定義,又橢圓上一點(diǎn)P到焦點(diǎn)的距離等于6,,故,故答案:.【點(diǎn)睛】本題主要考查橢圓的定義及簡(jiǎn)單性質(zhì),相對(duì)簡(jiǎn)單.16、##0.25【解析】求出點(diǎn)A,B坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達(dá)定理即可計(jì)算作答.【詳解】依題意,點(diǎn),直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)眾數(shù);中位數(shù)【解析】(1)根據(jù)頻率分布直方圖矩形面積和為1列式即可;(2)根據(jù)眾數(shù)即最高矩形中間值,中位數(shù)左右兩邊矩形面積各為0.5列式即可.【小問(wèn)1詳解】由,得【小問(wèn)2詳解】50名學(xué)生競(jìng)賽成績(jī)的眾數(shù)為設(shè)中位數(shù)為,則解得所以這50名學(xué)生競(jìng)賽成績(jī)的中位數(shù)為76.418、(1);(2)2.【解析】(1)由離心率,得到,再由點(diǎn)在橢圓上,得到,聯(lián)立求得,即可求得橢圓的方程.(2)設(shè)的方程為,聯(lián)立方程組,根據(jù)根系數(shù)的關(guān)系和弦長(zhǎng)公式,以及點(diǎn)到直線的距離公式,求得,結(jié)合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過(guò)點(diǎn),可得,將代入,可得,故橢圓方程為.(2)設(shè)的方程為,設(shè)點(diǎn),聯(lián)立方程組,消去y整理,得,所以,又直線與橢圓相交,所以,解得,則,點(diǎn)P到直線的距離,所以,當(dāng)且僅當(dāng),即時(shí),的面積取得最大值為2.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程的求解、及直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用,解答此類題目,通常聯(lián)立直線方程與橢圓方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解,此類問(wèn)題易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解,能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問(wèn)題解決問(wèn)題的能力等.19、(1);(2).【解析】(1)設(shè)數(shù)首項(xiàng)為,公差為,由,,列出方程組,求得,,即可求出數(shù)列的通項(xiàng)公式;(2),利用列項(xiàng)相消求和法即可得出答案.【詳解】(1)設(shè)數(shù)首項(xiàng)為,公差為,由題得.解得,,(負(fù)值舍去)所以;(2)由(1)得則.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因?yàn)锳B⊥BC,所以AB⊥平面,因?yàn)锳B平面,所以平面平面.(2)取AB中點(diǎn)G,連結(jié)EG,F(xiàn)G,因?yàn)镋,F(xiàn)分別是、的中點(diǎn),所以FG∥AC,且FG=AC,因?yàn)锳C∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因?yàn)镋G平面ABE,平面ABE,所以平面.(3)因?yàn)?AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點(diǎn):本小題主要考查直線與直線、直線與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識(shí),考查同學(xué)們的空間想象能力、推理論證能力、運(yùn)算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想21、(1)答案見(jiàn)解析;(2).【解析】(1)求出函數(shù)的定義域?yàn)椋蟮?,分、、三種情況討論,分析導(dǎo)數(shù)的符號(hào)變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對(duì)實(shí)數(shù)分和兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗(yàn)證是否成立,由此可得出實(shí)數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域?yàn)椋?(i)當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;(ii)當(dāng)時(shí),令得.若,則;若,則.①當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;②當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減;綜上,可得,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當(dāng)時(shí),單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當(dāng)時(shí),,于是,函數(shù)在
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2020級(jí)《形勢(shì)與政策》(一)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 河北省滄州市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)部編版課后作業(yè)(上學(xué)期)試卷及答案
- 云南省怒江傈僳族自治州(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)部編版期末考試(上學(xué)期)試卷及答案
- 2025屆天津市濱海新區(qū)大港油田一中生物高一上期末統(tǒng)考模擬試題含解析
- 2025屆吉林省吉林市普通中學(xué)數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測(cè)試題含解析
- 2025屆賀州市重點(diǎn)中學(xué)生物高一第一學(xué)期期末統(tǒng)考試題含解析
- 廣東省深圳市普通高中2025屆高二生物第一學(xué)期期末考試模擬試題含解析
- 內(nèi)蒙古呼倫貝爾市2025屆高一上數(shù)學(xué)期末聯(lián)考試題含解析
- 山東省濟(jì)南市回民中學(xué)2025屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 2025屆安徽滁州市來(lái)安縣來(lái)安三中生物高二上期末聯(lián)考試題含解析
- 2022-2023學(xué)年廣東深圳福田區(qū)七年級(jí)上冊(cè)期中地理試卷及答案
- 重大風(fēng)險(xiǎn)管控方案及措施客運(yùn)站
- 關(guān)于小學(xué)數(shù)學(xué)課堂中數(shù)形結(jié)合教學(xué)的調(diào)查研究的開(kāi)題報(bào)告
- 傳統(tǒng)文化的傳承和創(chuàng)新
- 2024春國(guó)開(kāi)會(huì)計(jì)實(shí)務(wù)專題形考任務(wù)題庫(kù)及答案匯總
- 工序質(zhì)量控制措施和自檢、自控措施
- 2024年科技部事業(yè)單位招聘95人歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 2024年深圳市公務(wù)員考試申論真題A卷綜覽
- 香港貿(mào)易創(chuàng)業(yè)計(jì)劃書
- 老年精神科健康宣教
- 案場(chǎng)服務(wù)方案
評(píng)論
0/150
提交評(píng)論