高效的時間圖學習:算法、框架與工具 Towards Efficient Temporal Graph Learning-Algorithms,Frameworks,and Tools_第1頁
高效的時間圖學習:算法、框架與工具 Towards Efficient Temporal Graph Learning-Algorithms,Frameworks,and Tools_第2頁
高效的時間圖學習:算法、框架與工具 Towards Efficient Temporal Graph Learning-Algorithms,Frameworks,and Tools_第3頁
高效的時間圖學習:算法、框架與工具 Towards Efficient Temporal Graph Learning-Algorithms,Frameworks,and Tools_第4頁
高效的時間圖學習:算法、框架與工具 Towards Efficient Temporal Graph Learning-Algorithms,Frameworks,and Tools_第5頁
已閱讀5頁,還剩346頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

TowardsEfficientTemporalGraphLearning:

Algorithms,Frameworks,andTools

RuijieWangWanyuZhaoDachunSunCharithMendisTarekAbdelzaher

UniversityofIllinoisUrbana-Champaign

{ruijiew2,wanyu2,dsun18,charithm,zaher}@I

Time:1:45PM-17:30PM,October21,2024

Location:Room120C,BoiseCentre,Boise,ID

Webpage:

https://wjerry5.github.io/cikm2024-tutorial/

Contents

?PartI-Introduction

?PartII-Data-EfficientTemporalGraphNeuralNetwork

?30-minCoffeeBreak

?PartIII-Resource-EfficientTemporalGraphNeuralNetwork

?PartIV-DiscussionandFutureDirections

3

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

BroadApplicationDomainsofGraphData

SocialNetworkAnalysisKnowledgeGraphReasoningWebMining

RecommendationScientificDiscoveryLLMPrompting&Reasoning

Universallanguagefordescribinginterconnecteddata!

4

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Real-WorldGraphsareEvolving–TemporalGraphs

TemporalFactsinKGs

MolecularDynamics

UserOnlineBehaviors

DynamicalSystems

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Real-WorldGraphsareEvolving–TemporalGraphs

oGraphshavetime-evolvingcomponents,e.g.,

oTopologystructures

oAdd/deletenodes

oAdd/deleteedges

oInputfeatures

oNode-levelfeatures

oEdge-levelfeatureso…

Dynamicedges[1]Dynamicnodeset[2]

Dynamicnode&edgefeatures[3]

[1]

/temporal-graph-networks-ab8f327f2efe

.

[2]Wanget.al.,LearningtoSampleandAggregate:Few-shotReasoningoverTemporalKnowledgeGraphs.

[3]ThomasKipf,EthanFetaya,Kuan-ChiehWang,MaxWelling,andRichardZemel.Neuralrelationalinferenceforinteractingsystems.

5

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

TemporalGraphs–Definition

oDiscrete-timevs.continuous-timetemporalgraphs

oDiscrete-timetemporalgraphs

oG={G1,…,GT?1,GT},

owhereGt=(?t,vt,xt)denotesone

snapshot.Discrete-timeexample[1]

oContinuous-timetemporalgraphs

oG={(ei,ej,t,+/?)},

owhereei,ej∈?,0≤t<T

Continuous-timeexample[2]

Howtoenabledeeplearningontemporalgraphs?

[1]Fuet.al.,NaturalandArtificialDynamicsinGNNs.

[2]Conget.al.,OntheGeneralizationCapabilityofTemporalGraphLearningAlgorithms:TheoreticalInsightsandaSimplerMethod.

6

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

GraphNeuralNetworks(GNNs)

oNodeshaverepresentationsateachlayer,wherelayer-0representationsareinputfeaturesx.

oBasicoperations:Sample&Aggregation+Update

Step1:Sample&Aggregate

Combinemsgsfromneighbors

Step2:Update

[1]WilliamL.HamiltonandJianTang.“GraphRepresentationLearning”.TutorialatAAAI2019.

Applyneuralnetworks

7

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

TemporalGraphNeuralNetworks(TGNNs)

oNodeshaverepresentationsateachlayer,wherelayer-0representationsareinputfeaturesx.

oNewoperationdesigns:Sample&Aggregation+Update

Step1:Sample&Aggregate

Combinemsgsfromneighbors

8

Step2:Update

Applyneuralnetworks

[1]WilliamL.HamiltonandJianTang.“GraphRepresentationLearning”.TutorialatAAAI2019.

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

TemporalGraphNeuralNetworks(TGNNs)

oCategoriesofTGNNs

oTGNNwithRNN

oTGNNwithselfattention

JODIE[1]

DySAT[2]

oTGNNwithmemory

TGAT[3]

oTGNNwithmemory&selfattention

o……

TGN[4]

[1]Kumaretal.,JODIE:PredictingDynamicEmb.TrajectoryinTemporalInteractionNetworks.[2]Sankaretal.,DySAT:DeepNeuralRepr.LearningonDynamicGraphsviaSelf-Attention

Networks.

[3]Xuetal.,InductiveRepresentationLearningonTemporalGraphs

[4]Rossietal.,TemporalGraphNetworksforDeepLearningonDynamicGraphs

9

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

TrainingandinferencepipelineofTGNNs

Evaluation

InputGraph

TGNNs

PredictionHead

Predictions

Labels

Loss

Function

10

oRepresentationlearning+task-relatedoptimization.

Time-EvolvingEmbeddings

[1]Congetal.,DoWeReallyNeedComplicatedModelArchitecturesForTemporalNetworks?

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Data-EfficiencyIssueofTGNNs

Evaluation

TGNNs

Time-EvolvingEmbeddings

PredictionHead

Predictions

Labels

Loss

Function

oTrainingTGNNsrequiresrelativelyabundantlabeleddata.

InputGraph

oInsufficientlabeleddataforreal-worldapplications:

oIndirectlabels

oScarcityoftask-specificlabels

oLimitedlabelsfornewtasks/distributions

11

12

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ComputationpipelineofTGNNs

oTrainingcomputation

FeatureFetching

Model

Computation

FeatureUpdate

Inference

oInferencecomputation

NeighborSampling

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Resource-EfficiencyIssueofTGNNs

NeighborSampling

Model

Computation

FeatureUpdate

Inference

oFastgrowingoftemporalgraphsv.s.limitedresources

FeatureFetching

13

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ScopeofThisTutorial

PartII

Data-EfficientTGNN

EfficientTGNN

PartIII

Resource-EfficientTGNN

oWefocusonalgorithm

designandoptimization

techniquestoaddressthechallengesposedby

insufficientlabels.

14

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ScopeofThisTutorial

EfficientTGNN

PartII

Data-EfficientTGNN

PartIII

Resource-EfficientTGNN

Self-SupervisedLearning

Weakly-SupervisedLearning

Few-ShotLearning

15

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ScopeofThisTutorial

EfficientTGNN

PartII

Data-EfficientTGNN

PartIII

Resource-EfficientTGNN

Self-SupervisedLearning

oWefocusonsystem

Weakly-SupervisedLearning

accelerationtoenablelarge-scaletrainingandinferencewithlimited

Few-ShotLearning

resources.

16

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ScopeofThisTutorial

EfficientTGNN

PartII

Data-EfficientTGNN

PartIII

Resource-EfficientTGNN

Self-SupervisedLearning

TrainingAcceleration

Weakly-SupervisedLearning

InferenceAcceleration

Few-ShotLearning

DistributedTrainingAcceleration

17

Contents

?PartI-Introduction

?PartII-Data-EfficientTemporalGraphNeuralNetwork

?30-minCoffeeBreak(15:30-16:00)

?PartIII-Resource-EfficientTemporalGraphNeuralNetwork

?PartIV-DiscussionandFutureDirections

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ScopeofThisTutorial

EfficientTGNN

PartII

Data-EfficientTGNN

PartIII

Resource-EfficientTGNN

TrainingAcceleration

Self-SupervisedLearning

InferenceAcceleration

Weakly-SupervisedLearning

DistributedTrainingAcceleration

Few-ShotLearning

19

20

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Self-SupervisedLearningonTemporalGraphs

?Introduction&Background

?Self-SupervisionbyReconstruction

?Self-SupervisionbyContrastiveApproach

?Self-SupervisionbyMultiviewConsistency

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Introduction–Self-SupervisedLearning(SSL)

oLearningusefulrepresentationswithoutrequiringlabeleddata.

oReliesontheinherentstructureandtemporaldynamicsofthegraphitself.

InductiveTask

Examineinferredrepresentationsofunseennodeby

predictingthefuturelinksbetweenunseennodesand

classifythembasedontheirinferredembedding

dynamically

TransductiveTask

Examinenodeembeddingsthathavebeenobservedin

training,viathefuturelinkpredictiontaskandthenode

classification.

t1t2tn

21

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ChallengesonTemporalGraphs

oChallenge1:Nodeembeddingsshouldalsofunctionoftime.

oChallenge2:Temporalconstraintsonneighborhoodaggregationmethods.

oChallenge3:Possiblymultiplenodeinteractions.

[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs22

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Background–AttentionMechanismonGraphs

oQueryneighborsbykeysderivedfromtheirrepresentations,aggregatingtheir

valuebytheattentionweight.

oQuestion:Howtoinvolvetemporalinformation?

PetarVeli?kovi?,GuillemCucurull,ArantxaCasanova,AdrianaRomero,PietroLiò,YoshuaBengio,GraphAttentionNetworks23

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Background–TimeEncoding

oAformof“positionalencoding”concatenatedtothenoderepresentation.

oGenerateavectorencodinggivenarealnumber.

oEncodingrepresentstimespanratherthanabsolutevalueoftime(Translation-invariance).

K(t1,ta):=(I(t1),J(ta)》K(t1+c,tz+c)=k(t1,ta)

UsingBochner’sTheoremandMonteCarloapproximation:

24

K(t,ta)~?工:1cos(urt1)cos(orta)+sin(urt1)sin(urta)

[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs

26

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Background–TemporalSubgraphSampling

oTemporalsubgraphsamplingiskeytobatch-wisetrainingandcontrastivepairconstruction.

oMessagepassingdirectionsmustalignwiththeobservedchronologicalorders.

oGivenatargetnumberofnodesforsubgraph,candidatescanbefurtherweightedby

structuralortemporalimportance.

oDegree,centrality,orPageRank

oTimeelapsed.

27

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Introduction–Self-SupervisedLearning(SSL)

oSSLparadigmstypicallygeneratesupervisionsignalsthroughdesignedtasks:

oTransductivefuturelinkreconstruction.Lossisbasedoncrossentropy.

oContrastivelearning:learningfrompositiveandnegativepairofexamples.Lossisbasedonsimilaritymeasure.

oMultiviewconsistency:representationsshouldberobustunderperturbationsandagreewitheachother.Lossisbasedonregularizations.

NewBatch

EdgeProbabilities

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyReconstruction:TGAT

oObjective:Producetime-awarerepresentationforatargetnodeattimepointt.

oMotivation:AnalogoustoGraphSAGEorGAT,takestemporalneighborhoodwithhiddenrepresentationsandtimestamps,andaggregate.

oMethod:Alocalaggregationoperator,usingattentionmechanism.

0

oLink

prediction

loss:

28

[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyReconstruction:TGAT

oExperiments:Transductive&inductivelearningtaskforfuturelinkprediction.

[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs29

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyReconstruction:TemporalGraphNetworks(TGN)

oMotivation:Viewingdynamicgraphsassequencesoftimedevents.

oMethod:Fivemodulesthatprocessdynamicgraphsasaseriesofnode-wise

event,interactionevent,ordeletionevent,andsavethenodestatestomemory.

Aggregatedmessages

Rawmessages

Messages

Memory

m:(t)=msgs(s,(t"),sj(t"),At,ej(t))

Identity,MLP

Mostrecent,Mean

LSTM,GRU

[1]EmanueleRossi,BenChamberlain,FabrizioFrasca,DavideEynard,FedericoMonti,MichaelBronstein,TemporalGraphNetworksforDeepLearningonDynamicGraphs30

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyReconstruction:TemporalGraphNetworks(TGN)

oMotivation:Viewingdynamicgraphsassequencesoftimedevents.

oMethod:Fivemodulesthatprocessdynamicgraphsasaseriesofnode-wise

event,interactionevent,ordeletionevent,andsavethenodestatestomemory.

NewBatch

MemoryNodeEmbeddingsEdgeProbabilities

Identity,

TimeProjection

TemporalGraphAttention

31

TemporalGraphSum

[1]EmanueleRossi,BenChamberlain,FabrizioFrasca,DavideEynard,FedericoMonti,MichaelBronstein,TemporalGraphNetworksforDeepLearningonDynamicGraphs

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyReconstruction:TemporalGraphNetworks(TGN)

oExperiments:Transductive&inductivelearningtaskforfuturelinkprediction.

[1]EmanueleRossi,BenChamberlain,FabrizioFrasca,DavideEynard,FedericoMonti,MichaelBronstein,TemporalGraphNetworksforDeepLearningonDynamicGraphs32

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyContrastiveLearning:TGAT-CL

oMotivation:Noderepresentationprocessisingeneral“smooth”.

oMethod:Contrastthesamenoderepresentationovertime.

Q(tx,ty)=S(Itx-tyl)

[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs33

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyContrastiveLearning:TGAT-CL

oMotivation:Noderepresentationprocessisingeneral“smooth”.

oMethod:Contrastthesamenoderepresentationovertime.

oChallenge:Biasinnegativeexamplesampling.

sim(x,y)=x'yS(tx,ty)=s(Itx-tyl)

oContrastiveLoss

[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs34

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyContrastiveLearning:TGAT-CL

oMotivation:Noderepresentationprocessisingeneral“smooth”.

oMethod:Contrastthesamenoderepresentationovertime.

oChallenge:Biasinnegativeexamplesampling.

oDebiasedContrastiveLoss:

tt=p(c(x')=c(x))

[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs35

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyContrastiveLearning:TGAT-CL

oMotivation:DynamicnodeclassificationperformanceinaverageAUCanddynamiclinkpredictionperformanceinaverageprecision.

[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs36

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyContrastiveLearning:DySubC

oMotivation:Nodevs.subgraphrepresentations;temporalvs.staticrepresentations.

oMethod:Contrastbetweenapositivesubgraphsample,atemporalnegativesample,andastructuralnegativesample.

Readout:

[1]Ke-JiaChen,LinsongLiu,LinpuJiang,JingqiangChen,Self-SupervisedDynamicGraphRepresentationLearningviaTemporalSubgraphContrast37

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyContrastiveLearning:DySubC

oMotivation:Nodevs.subgraphrepresentations;temporalvs.staticrepresentations.

oMethod:Contrastbetweenapositivesubgraphsample,atemporalnegativesample,andastructuralnegativesample.

TrainingLoss:

L=L1+LZ

[1]Ke-JiaChen,LinsongLiu,LinpuJiang,JingqiangChen,Self-SupervisedDynamicGraphRepresentationLearningviaTemporalSubgraphContrast38

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyContrastiveLearning:DySubC

oExperiments:LinkpredictionintermsofaverageAUCscoreandAccuracy.

[1]Ke-JiaChen,LinsongLiu,LinpuJiang,JingqiangChen,Self-SupervisedDynamicGraphRepresentationLearningviaTemporalSubgraphContrast39

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyMultiviewConsistency:DyG2Vec

oMotivation:Embeddingsshouldbeconsistentundergraphperturbations.

oNewGraphEncoder:Accordingtoablationstudy,thesubgraphencoderisundirectedandnon-causal.

[1]MohammadAlomrani,MahdiBiparva,YingxueZhang,MarkCoates,DyG2Vec:EfficientRepresentationLearningforDynamicGraphs40

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyMultiviewConsistency:DyG2Vec

oMotivation:Embeddingsshouldbeconsistentundergraphaugmentations.

oMethod:Useedgedropoutandedgefeaturemaskingtoproducedifferent“views”,anduseregularization-basedSSLlossfunction

41

+viciz)+ciz'l

[1]MohammadAlomrani,MahdiBiparva,YingxueZhang,MarkCoates,DyG2Vec:EfficientRepresentationLearningforDynamicGraphs

[2]AdrienBardes,JeanPonce,YannLeCun,VICReg:Variance-Invariance-CovarianceRegularizationforSelf-SupervisedLearning

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

SSLbyMultiviewConsistency:DyG2Vec

oExperiments:LinkpredictionintermsofaverageAUCscoreandAccuracy.

[1]MohammadAlomrani,MahdiBiparva,YingxueZhang,MarkCoates,DyG2Vec:EfficientRepresentationLearningforDynamicGraphs42

43

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Data-EfficientTGNNCheckpoint

Self-SupervisedLearning

oIntroduction&Background

oReconstruction

oContrastiveLearning

oMultiviewApproach

Q&A

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

ScopeofThisTutorial

EfficientTGNN

PartII

Data-EfficientTGNN

PartIII

Resource-EfficientTGNN

Self-SupervisedLearning

TrainingAcceleration

InferenceAcceleration

Weakly-SupervisedLearning

Few-ShotLearning

DistributedTrainingAcceleration

44

45

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Weakly-SupervisedLearningonTemporalGraphs

?Introduction&Background

?Weak-SupervisionwithLimitedInformation

?Weak-SupervisiononSparseTemporalGraph

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Introduction–Weakly-SupervisedLearning

oLearninguseful(orbetter)representationsusinglimitedlabeledornoisydata.

oInherentstructureandtemporaldynamicsofthegraphitselfarestillimportant.

oChallenge1:Effectivelyexploitweakinformationinthetrainingprocess.

oChallenge2:Learningrepresentationsondynamicandnoisygraphs.

[1]Leftimageisfrom

/watch?v=WQb6h19PrJA

[2]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs

46

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Weak-SupervisiononLimitedLabeledData:D2PT

oMotivation:DesignauniversalandeffectiveGNNforgraphlearningwithweakinformation(GLWI).Disclaimer:Thisworkisforstaticgraphs.

oMethod:ExecuteeffectiveinformationpropagationinGNNs.

[1]YixinLiu,KaizeDing,JianlingWang,VincentLee,HuanLiu,ShiruiPan,LearningStrongGraphNeuralNetworkswithWeakInformation47

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Weak-SupervisiononLimitedLabeledData:D2PT

oMotivation:DesignauniversalandeffectiveGNNforgraphlearningwithweakinformation(GLWI).Disclaimer:Thisworkisforstaticgraphs.

oMethod:ExecuteeffectiveinformationpropagationinGNNs.

[1]YixinLiu,KaizeDing,JianlingWang,VincentLee,HuanLiu,ShiruiPan,LearningStrongGraphNeuralNetworkswithWeakInformation48

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Weak-SupervisiononLimitedLabeledData:D2PT

oExperiments:ClassificationaccuracyinextremeGLWIscenario.

[1]YixinLiu,KaizeDing,JianlingWang,VincentLee,HuanLiu,ShiruiPan,LearningStrongGraphNeuralNetworkswithWeakInformation49

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Weak-SupervisiononSparseTemporalGraph:GSNOP

oObjective:Addressthesituationwherethereisnotenoughhistoricaldata.

oMotivation:Missinglinksarecommon.Howtolearnbetterrepresentationonsparsegraphsandpreventoverfitting.

[1]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs50

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Weak-SupervisiononSparseTemporalGraph:GSNOP

oMethod:Treatthelinkpredictionasadynamic-changingstochasticprocessandemployneuralprocess.

[1]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs51

PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future

Weak-SupervisiononSparseTemporalGraph:GSNOP

oMethod:Treatthelinkpredictionasadynamic-changingstochasticprocessandemployneuralprocess.

[1]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs52

PartI-Introduction

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論