版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣西桂林市十八中2025屆高一上數(shù)學(xué)期末綜合測試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù),且,則()A. B.C. D.2.已知扇形周長為40,當(dāng)扇形的面積最大時(shí),扇形的圓心角為()A. B.C.3 D.23.將函數(shù)的周期擴(kuò)大到原來的2倍,再將函數(shù)圖象左移,得到圖象對應(yīng)解析式是()A. B.C. D.4.劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一.他在割圓術(shù)中提出的“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正邊形等分成個(gè)等腰三角形(如圖所示),當(dāng)變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,可以得到的近似值為()A. B.C. D.5.將的圖象向右平移個(gè)單位,再把所得圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍得到的圖象,則A. B.C. D.6.已知函數(shù)是定義在在上的奇函數(shù),且當(dāng)時(shí),,則函數(shù)的零點(diǎn)個(gè)數(shù)為()個(gè)A.2 B.3C.6 D.77.定義在上的函數(shù)滿足,且當(dāng)時(shí),.若關(guān)于的方程在上至少有兩個(gè)實(shí)數(shù)解,則實(shí)數(shù)的取值范圍為A. B.C. D.8.如圖,在正四棱柱中,,點(diǎn)是平面內(nèi)的一個(gè)動(dòng)點(diǎn),則三棱錐的正視圖和俯視圖的面積之比的最大值為A B.C. D.9.2019年7月,中國良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國際社會認(rèn)可.考古科學(xué)家在測定遺址年齡的過程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳14的質(zhì)量N隨時(shí)間t(單位:年)的衰變規(guī)律滿足(表示碳14原有的質(zhì)量).經(jīng)過測定,良渚古城遺址文物樣本中碳14的質(zhì)量是原來的至,據(jù)此推測良渚古城存在的時(shí)期距今約()年到5730年之間?(參考數(shù)據(jù):,)A.4011 B.3438C.2865 D.229210.設(shè)是定義在實(shí)數(shù)集上的函數(shù),且,若當(dāng)時(shí),,則有()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計(jì)算值為______12.函數(shù)單調(diào)遞增區(qū)間為_____________13.若直線:與直線:互相垂直,則實(shí)數(shù)的值為__________14.在用二分法求方程的一個(gè)近似解時(shí),現(xiàn)在已經(jīng)將根鎖定在區(qū)間(1,2)內(nèi),則下一步可以斷定該根所在區(qū)間為___________.15.函數(shù),若最大值為,最小值為,,則的取值范圍是______.16.________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合,(1)若,求;(2)在①,②,③,這三個(gè)條件中任選一個(gè)作為已知條件,求實(shí)數(shù)的取值范圍18.設(shè)不等式的解集為集合A,關(guān)于x的不等式的解集為集合B.(1)若,求;(2)命題p:,命題q:,若p是q的必要不充分條件,求實(shí)數(shù)m的取值范圍.19.如圖是函數(shù)的部分圖像,是它與軸的兩個(gè)不同交點(diǎn),是之間的最高點(diǎn)且橫坐標(biāo)為,點(diǎn)是線段的中點(diǎn).(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;(2)若時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.20.某實(shí)驗(yàn)室一天的溫度(單位:)隨時(shí)間(單位:)的變化近似滿足函數(shù)關(guān)系:,.(Ⅰ)求實(shí)驗(yàn)室這一天的最大溫差;(Ⅱ)若要求實(shí)驗(yàn)室溫度不高于,則在哪個(gè)時(shí)間段實(shí)驗(yàn)室需要降溫?21.已知函數(shù),且滿足.(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;(2)設(shè)函數(shù),求在區(qū)間上的最大值;(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個(gè)不同的正根,求實(shí)數(shù)m的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】構(gòu)造函數(shù),判斷的單調(diào)性和奇偶性,由此化簡不等式,即得.【詳解】∵函數(shù),令,則,∴的定義域?yàn)?,,所以函?shù)為奇函數(shù),又,當(dāng)增大時(shí),增大,即在上遞增,由,可得,即,∴,∴,即.故選:B.2、D【解析】設(shè)出扇形半徑并表示出弧長后,由扇形面積公式求出取到面積最大時(shí)半徑的長度,代入圓心角弧度公式即可得解.【詳解】設(shè)扇形半徑,易得,則由已知該扇形弧長為.記扇形面積為,則,當(dāng)且僅當(dāng),即時(shí)取到最大值,此時(shí)記扇形圓心角為,則故選:D3、D【解析】直接利用函數(shù)圖象的與平移變換求出函數(shù)圖象對應(yīng)解析式【詳解】解:將函數(shù)y=5sin(﹣3x)的周期擴(kuò)大為原來的2倍,得到函數(shù)y=5sin(x),再將函數(shù)圖象左移,得到函數(shù)y=5sin[(x)]=5sin()=5sin()故選D【點(diǎn)睛】本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,屬于基礎(chǔ)題.4、B【解析】將一個(gè)圓的內(nèi)接正邊形等分成個(gè)等腰三角形;根據(jù)題意,可知個(gè)等腰三角形的面積和近似等于圓的面積,從而可求的近似值.【詳解】將一個(gè)圓的內(nèi)接正邊形等分成個(gè)等腰三角形,設(shè)圓的半徑為,則,即,所以.故選:B.5、A【解析】由三角函數(shù)圖象的平移變換及伸縮變換可得:將的圖象所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,再把所得圖象向左平移個(gè)單位,即可得到的圖象,得解【詳解】解:將的圖象所有點(diǎn)的橫坐標(biāo)縮短到原來的倍得到,再把所得圖象向左平移個(gè)單位,得到,故選A【點(diǎn)睛】本題主要考查了三角函數(shù)圖象的平移變換及伸縮變換,屬于簡單題6、D【解析】作出函數(shù),和圖象,可知當(dāng)時(shí),的零點(diǎn)個(gè)數(shù)為3個(gè);再根據(jù)奇函數(shù)的對稱性,可知當(dāng)時(shí),也有3個(gè)零點(diǎn),再根據(jù),由此可計(jì)算出函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】在同一坐標(biāo)系中作出函數(shù),和圖象,如下圖所示:由圖象可知,當(dāng)時(shí),的零點(diǎn)個(gè)數(shù)為3個(gè);又因?yàn)楹瘮?shù)和均是定義在在上的奇函數(shù),所以是定義在在上的奇函數(shù),根據(jù)奇函數(shù)的對稱性,可知當(dāng)時(shí),的零點(diǎn)個(gè)數(shù)也為3個(gè),又,所以也是零點(diǎn);綜上,函數(shù)的零點(diǎn)個(gè)數(shù)一共有7個(gè).故選:D.7、C【解析】原問題等價(jià)于函數(shù)與的圖象至少有兩個(gè)交點(diǎn)【詳解】解:關(guān)于的方程在上至少有兩個(gè)實(shí)數(shù)解,等價(jià)于函數(shù)與的圖象至少有兩個(gè)交點(diǎn),因?yàn)楹瘮?shù)滿足,且當(dāng)時(shí),,所以當(dāng)時(shí),,時(shí),,時(shí),,所以的大致圖象如圖所示:因?yàn)楸硎竞氵^定點(diǎn),斜率為的直線,所以要使兩個(gè)函數(shù)圖象至少有兩個(gè)交點(diǎn),由圖可知只需,即,故選:C8、B【解析】由題意可知,P在正視圖中的射影是在C1D1上,AB在正視圖中,在平面CDD1C1上的射影是CD,P的射影到CD的距離是AA1=2,所以三棱錐P﹣ABC的正視圖的面積為三棱錐P﹣ABC的俯視圖的面積的最小值為,所以三棱錐P﹣ABC的正視圖與俯視圖的面積之比的最大值為,故選B點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.9、A【解析】由已知條件可得,兩邊同時(shí)取以2為底的對數(shù),化簡計(jì)算可求得答案【詳解】因?yàn)樘?4的質(zhì)量是原來的至,所以,兩邊同時(shí)取以2為底的對數(shù)得,所以,所以,則推測良渚古城存在的時(shí)期距今約在4011年到5730年之間.故選:A.10、B【解析】由f(2-x)=f(x)可知函數(shù)f(x)的圖象關(guān)于x=1對稱,所以,,又當(dāng)x≥1時(shí),f(x)=lnx單調(diào)遞增,所以,故選B二、填空題:本大題共6小題,每小題5分,共30分。11、1;【解析】12、【解析】先求出函數(shù)的定義域,再利用求復(fù)合函數(shù)單調(diào)區(qū)間的方法求解即得.【詳解】依題意,由得:或,即函數(shù)的定義域是,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而在上單調(diào)遞增,于是得在是單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故答案為:13、-2【解析】由于兩條直線垂直,故.14、【解析】根據(jù)二分法,取區(qū)間中點(diǎn)值,而,,所以,故判定根區(qū)間考點(diǎn):二分法【方法點(diǎn)睛】本題主要考察了二分法,屬于基礎(chǔ)題型,對于零點(diǎn)所在區(qū)間的問題,不管怎么考察,基本都要判斷端點(diǎn)函數(shù)值的正負(fù),如果異號,那零點(diǎn)必在此區(qū)間,如果是幾個(gè)零點(diǎn),還要判定此區(qū)間的單調(diào)性,這個(gè)題考查的是二分法,所以要算區(qū)間的中點(diǎn)值,和兩個(gè)端點(diǎn)值的符號,看是否異號.零點(diǎn)肯定在異號的區(qū)間15、【解析】先化簡,然后分析的奇偶性,將的最大值和小值之和轉(zhuǎn)化為和有關(guān)的式子,結(jié)合對勾函數(shù)的單調(diào)性求解出的取值范圍.【詳解】,令,定義域?yàn)殛P(guān)于原點(diǎn)對稱,∴,∴為奇函數(shù),∴,∴,,由對勾函數(shù)的單調(diào)性可知在上單調(diào)遞減,在上單調(diào)遞增,∴,,,∴,∴,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解答本題的關(guān)鍵在于函數(shù)奇偶性的判斷,同時(shí)需要注意到奇函數(shù)在定義域上如果有最值,那么最大值和最小值一定是互為相反數(shù).16、【解析】.考點(diǎn):誘導(dǎo)公式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析【解析】(1)分別求出集合和集合,求并集即可;(2)選①,根據(jù)集合和集合的位置在數(shù)軸上確定端點(diǎn)的關(guān)系,列出不等式組即可求解,選②,先求出,再根據(jù)條件在數(shù)軸確定端點(diǎn)位置關(guān)系列出不等式組即可求解,選③,得到,根據(jù)數(shù)軸端點(diǎn)位置關(guān)系列出不等式組即可求解.【小問1詳解】因?yàn)?,所以,又因?yàn)椋浴拘?詳解】若選①:則滿足或,所以的取值范圍為或若選②:所以或,則滿足,所以的取值范圍為若選③:由題意得,則滿足所以的取值范圍為18、(1)(2)【解析】(1)求解A,B,根據(jù)交集、補(bǔ)集運(yùn)算即可;(2)由題意轉(zhuǎn)化為,建立不等式求解即可.【詳解】(1),,解得,所以,當(dāng)時(shí),由可得,解得,所以,,所以(2)由解得,即,因?yàn)槊}p:,命題q:,且p是q的必要不充分條件,所以,所以,且等號不同時(shí)成立,解得,即實(shí)數(shù)m的取值范圍為【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)充分條件、必要條件的意義,轉(zhuǎn)化為集合間的包含、真包含關(guān)系,是解題的關(guān)鍵,屬于中檔題.19、(1)(2)【解析】(1)由點(diǎn)是線段的中點(diǎn),可得和的坐標(biāo),從而得最值和周期,可得和,再代入頂點(diǎn)坐標(biāo)可得,再利用整體換元可求單調(diào)區(qū)間;(2)令得到,討論二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系求最值即可.【詳解】(1)因?yàn)闉橹悬c(diǎn),,所以,,則,,又因?yàn)?,則所以,由又因?yàn)椋瑒t所以令又因?yàn)閯t單調(diào)遞增區(qū)間為.(2)因?yàn)樗粤?,則對稱軸為①當(dāng)時(shí),即時(shí),;②當(dāng)時(shí),即時(shí),(舍)③當(dāng)時(shí),即時(shí),(舍)綜上可得:.【點(diǎn)睛】本題主要考查了利用三角函數(shù)的圖象求解三角函數(shù)的解析式及二次函數(shù)軸動(dòng)區(qū)間定的最值問題,考查了學(xué)生的分類討論思想及計(jì)算能力,屬于中檔題.20、(Ⅰ);(Ⅱ)從中午點(diǎn)到晚上點(diǎn).【解析】(Ⅰ)利用輔助角公式化簡函數(shù)的解析式為,由此可得出實(shí)驗(yàn)室這一天的最大溫差;(Ⅱ)由,得出,令,得到,解此不等式即可得出結(jié)論.【詳解】(Ⅰ),.因此,實(shí)驗(yàn)室這一天的最大溫差為;(Ⅱ)當(dāng)時(shí),,令,得,所以,解得,因此,實(shí)驗(yàn)室從中午點(diǎn)到晚上點(diǎn)需要降溫.【點(diǎn)睛】本題考查三角函數(shù)模型在生活中的應(yīng)用,涉及正弦不等式的求解,考查運(yùn)算求解能力,屬于中等題.21、(1)見解析(2)時(shí),.(3)【解析】(1)根據(jù)確定a.再任取兩數(shù),作差,通分并根據(jù)分子分母符號確定差的符號,最后根據(jù)定義確定函數(shù)單調(diào)性(2)先根據(jù)絕對值定義將函數(shù)化為分段函數(shù),都可化為二次函數(shù),再根據(jù)對稱軸與定義區(qū)間位置關(guān)系確定最值,最后取兩個(gè)最大值中較大值(3)先對方程變形得,設(shè),轉(zhuǎn)化為方程方程在有兩個(gè)不等的根,根據(jù)二次函數(shù)圖像,得實(shí)根分布條件,解得實(shí)數(shù)m的取值范圍.試題解析:(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年基站場地租賃協(xié)議模板
- 店鋪出租協(xié)議文本 2024 年
- 2024泵車租賃協(xié)議定制集錦
- 2024年商業(yè)街店鋪?zhàn)赓U協(xié)議
- 2024年專業(yè)委托信用擔(dān)保服務(wù)協(xié)議
- 2024年規(guī)范化小型物流服務(wù)協(xié)議
- 2024年定制反擔(dān)保保障協(xié)議
- 2024年度房產(chǎn)指標(biāo)交易協(xié)議模板
- 2024年規(guī)范安置房交易協(xié)議
- 2024年度人身傷害賠償協(xié)議樣本
- 安全生產(chǎn)治本攻堅(jiān)三年行動(dòng)方案(2024-2026)
- MOOC 頸肩腰腿痛中醫(yī)防治-暨南大學(xué) 中國大學(xué)慕課答案
- 形勢與政策-論朝鮮半島局勢
- 通達(dá)信指標(biāo)公式源碼主力動(dòng)向
- 潛油泵及潛油泵加油機(jī)講義
- 醫(yī)患溝通內(nèi)容要求記錄模板(入院、入院三日、術(shù)前、術(shù)后、出院)
- 第8章 腹部檢查(講稿)
- 淺談深度教學(xué)中小學(xué)數(shù)學(xué)U型學(xué)習(xí)模式
- 濕法脫硫工藝計(jì)算書
- (醫(yī)學(xué)PPT課件)NT檢查規(guī)范
- 導(dǎo)電炭黑的用途及使用方法
評論
0/150
提交評論