云南省賓川縣四校2025屆數(shù)學(xué)高二上期末檢測試題含解析_第1頁
云南省賓川縣四校2025屆數(shù)學(xué)高二上期末檢測試題含解析_第2頁
云南省賓川縣四校2025屆數(shù)學(xué)高二上期末檢測試題含解析_第3頁
云南省賓川縣四校2025屆數(shù)學(xué)高二上期末檢測試題含解析_第4頁
云南省賓川縣四校2025屆數(shù)學(xué)高二上期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省賓川縣四校2025屆數(shù)學(xué)高二上期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C與相等 D.2.曲線在處的切線的傾斜角是()A. B.C. D.3.已知橢圓的左、右焦點分別為,點是橢圓上的一點,點是線段的中點,為坐標(biāo)原點,若,則()A.3 B.4C.6 D.114.曲線在點處的切線過點,則實數(shù)()A. B.0C.1 D.25.在正項等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.326.設(shè)A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.07.若,則的值為()A.或 B.或C.1 D.-18.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.39.用3,4,5,6,7,9這6個數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),下列結(jié)論正確的有()A.在這樣的六位數(shù)中,奇數(shù)共有480個B.在這樣的六位數(shù)中,3、5、7、9相鄰的共有120個C.在這樣的六位數(shù)中,4,6不相鄰的共有504個D.在這樣六位數(shù)中,4個奇數(shù)從左到右按照從小到大排序的共有60個10.某地區(qū)高中分三類,A類學(xué)校共有學(xué)生2000人,B類學(xué)校共有學(xué)生3000人,C類學(xué)校共有學(xué)生4000人,若采取分層抽樣的方法抽取900人,則A類學(xué)校中的學(xué)生甲被抽到的概率()A. B.C. D.11.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機調(diào)查了名學(xué)生,其中到過中共一大會址或井岡山研學(xué)旅行的共有人,到過井岡山研學(xué)旅行的人,到過中共一大會址并且到過井岡山研學(xué)旅行的恰有人,根據(jù)這項調(diào)查,估計該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.12.已知是偶函數(shù)的導(dǎo)函數(shù),.若時,,則使得不等式成立的的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,則與側(cè)面所成角的正弦值為______14.若橢圓:的長軸長為4,焦距為2,則橢圓的標(biāo)準(zhǔn)方程為______.15.某古典概型的樣本空間,事件,則___________.16.曲線在點處的切線方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某校從高三年級學(xué)生中隨機抽取名學(xué)生的某次數(shù)學(xué)考試成績,將其成績分成,,,,的組,制成如圖所示的頻率分布直方圖.(1)求圖中的值;(2)估計這組數(shù)據(jù)的平均數(shù);(3)若成績在內(nèi)的學(xué)生中男生占.現(xiàn)從成績在內(nèi)的學(xué)生中隨機抽取人進行分析,求人中恰有名女生的概率.18.(12分)在平面直角坐標(biāo)系中,圓外的點在軸的右側(cè)運動,且到圓上的點的最小距離等于它到軸的距離,記的軌跡為(1)求的方程;(2)過點的直線交于,兩點,以為直徑的圓與平行于軸的直線相切于點,線段交于點,證明:是的中點19.(12分)如圖所示在多面體中,平面,四邊形是正方形,,,,.(1)求證:直線平面;(2)求平面與平面夾角的余弦值.20.(12分)某蓮藕種植塘每年的固定成本是2萬元,每年最大規(guī)模的種植量是8萬千克,每種植1萬千克蓮藕,成本增加0.5萬元.種植萬千克蓮藕的銷售額(單位:萬元)是(是常數(shù)),若種植2萬千克蓮藕,利潤是1.5萬元,求:(1)種植萬千克蓮藕利潤(單位:萬元)為的解析式;(2)要使利潤最大,每年需種植多少萬千克蓮藕,并求出利潤的最大值.21.(12分)記為等差數(shù)列的前n項和,已知.(1)求的通項公式;(2)求的最小值.22.(10分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標(biāo)原點,過且不平行于坐標(biāo)軸的動直線與有兩個交點,,線段的中點為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D2、D【解析】求出函數(shù)的導(dǎo)數(shù),再求出并借助導(dǎo)數(shù)的幾何意義求解作答.【詳解】由求導(dǎo)得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D3、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因為,所以,因為點分別是線段,的中點,所以是的中位線,所以.故選:A.4、A【解析】由導(dǎo)數(shù)的幾何意義得切線方程為,進而得.【詳解】解:因為,,,所以,切線方程為,因為切線過點,所以,解得故選:A5、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因為和為方程的兩根,所以,又因為數(shù)列是等比數(shù)列,所以,故選:C6、A【解析】先化簡A-B,發(fā)現(xiàn)其結(jié)果為二項式展開式,然后計算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點睛】本題主要考查了二項式定理的運用,關(guān)鍵是通過化簡能夠發(fā)現(xiàn)其結(jié)果在形式上滿足二項式展開式,然后計算出結(jié)果,屬于基礎(chǔ)題7、B【解析】求出函數(shù)的導(dǎo)數(shù),由方程求解即可.【詳解】,,解得或,故選:B8、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因為拋物線的焦點的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.9、A【解析】A選項,特殊位置優(yōu)先考慮求出這樣的六位數(shù)中,奇數(shù)個數(shù);B選項,相鄰問題捆綁法求解;C選項,不相鄰問題插空法求解;D選項,定序問題使用倍縮法求解.【詳解】用3,4,5,6,7,9這6個數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),個位為3,5,7,9中的一位,有種,其余五個數(shù)位上的數(shù)字進行全排列,有種,綜上:在這樣的六位數(shù)中,奇數(shù)共有個,A正確;在這樣的六位數(shù)中,3、5、7、9相鄰,將3、5、7、9捆綁,有種排法,再與4,6進行全排列,故共有個,B錯誤;在這樣的六位數(shù)中,4,6不相鄰,先將3、5、7、9進行全排列,再從五個位置中任選兩個將4,6排列,綜上共有個,C錯誤;在這樣的六位數(shù)中,4個奇數(shù)從左到右按照從小到大排序的共有個,D錯誤.故選:A10、D【解析】利用抽樣的性質(zhì)求解【詳解】所有學(xué)生數(shù)為,所以所求概率為.故選:D11、B【解析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應(yīng)用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.12、C【解析】構(gòu)造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關(guān)于的不等式,即可得解.【詳解】構(gòu)造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當(dāng)時,,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因為,則,由得,可得,解得故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作圖,考慮底面是正三角形,按照線面夾角的定義構(gòu)造直角三角形即可.【詳解】依題意,作圖如下,取的中點G,連結(jié),∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,與平面的夾角=,在中,,故答案為:.14、【解析】由焦距可得c,長軸長得到a,再根據(jù)可得答案.【詳解】因為橢圓的長軸長為4,則,焦距為2,由,得,則橢圓的標(biāo)準(zhǔn)方程為:.故答案為:.15、##0.5【解析】根據(jù)定義直接計算得到答案.【詳解】.故答案為:.16、【解析】求導(dǎo)后令求出切線斜率,即可寫出切線方程.【詳解】由題意知:,當(dāng)時,,故切線方程為,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)77(3)【解析】(1)根據(jù)給定條件結(jié)合頻率分布直方圖中各小矩形面積和為1的特點列式計算即得.(2)利用頻率分布直方圖求平均數(shù)的方法直接列式計算即得.(3)求出成績在內(nèi)的學(xué)生及男女生人數(shù),再用列舉法即可求出概率.【小問1詳解】由頻率分布直方圖得,解得,所以圖中值是0.020.【小問2詳解】由頻率分布直方圖得這組數(shù)據(jù)的平均數(shù):,所以這組數(shù)據(jù)的平均數(shù)為77.【小問3詳解】數(shù)學(xué)成績在內(nèi)的人數(shù)為(人),其中男生人數(shù)為(人),則女生人數(shù)為人,記名男生分別為,,名女生分別為,,,從數(shù)學(xué)成績在內(nèi)的人中隨機抽取人進行分析的基本事件為:,共個不同結(jié)果,它們等可能,其中人中恰有名女生的基本事件為,共種結(jié)果,所以人中恰有名女生的概率為為.18、(1)(2)證明見解析【解析】(1)設(shè)點,求得到圓上的最小距離為,根據(jù)題意得到,整理即可求得曲線的方程;(2)當(dāng)直線的斜率不存在時,顯然成立;當(dāng)直線的斜率存在時,設(shè)直線的方程,聯(lián)立方程組求得和,得到,結(jié)合拋物線的定義和方程求得,,結(jié)合,即可求解.【小問1詳解】解:設(shè)點,(其中),由圓,可得圓心坐標(biāo)為,因為在圓外,所以到圓上的點的最小距離為,又由到圓上的點的最小距離等于它到軸的距離,可得,即,整理得,即曲線的方程為【小問2詳解】解:當(dāng)直線的斜率不存在時,可得點為拋物線的交點,點為坐標(biāo)原點,點為拋物線的準(zhǔn)線與軸的交點,顯然滿足是的中點;當(dāng)直線的斜率存在時,設(shè)直線的方程,設(shè),,,則,聯(lián)立方程組,整理得,因為,且,則,故,由拋物線的定義知,設(shè),可得,所以,又因為,所以,解得,所以,因為在地物線上,所以,即,所以,即是的中點19、(1)證明見解析;(2).【解析】(1)以點為坐標(biāo)原點,分別以、、為、、軸建立空間直角坐標(biāo)系,利用空間向量法可證明出直線平面;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】證明:因為平面,,以點為坐標(biāo)原點,分別以、、為、、軸建立空間直角坐標(biāo)系,則、、、、、,所以,,,設(shè)平面的法向量為,依題意有,即,令,可得,,則,平面,因此,平面.【小問2詳解】解:由題,,設(shè)平面的法向量為,依題意有,即,取,可得,,因此,平面與平面的夾角余弦值為.20、(1),;(2)6萬千克,萬元.【解析】(1)根據(jù)題意找等量關(guān)系即可求g(x)解析式,根據(jù)函數(shù)值可求a;(2)根據(jù)g(x)導(dǎo)數(shù)研究其單調(diào)性并求其最大值即可.【小問1詳解】種植萬千克蓮藕的利潤(單位:萬元)為:,,即,,當(dāng)時,,解得,故,;【小問2詳解】,當(dāng)時,,當(dāng)時,,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴時,利潤最大為萬元.21、(1)(2)【解析】(1)設(shè)數(shù)列的公差為d,由,利用等差數(shù)列的前n項和公式求解;(2)利用等差數(shù)列的前n項和公式結(jié)合二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)數(shù)列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當(dāng)時,取得最小值-16.22、(1);(2)證明見解析;(3)不存在,理由見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論