![第24章 解直角三角形 華師大版數(shù)學(xué)九年級上冊教案_第1頁](http://file4.renrendoc.com/view8/M02/29/28/wKhkGWcoiVGALjs-AAHg60dIeaQ911.jpg)
![第24章 解直角三角形 華師大版數(shù)學(xué)九年級上冊教案_第2頁](http://file4.renrendoc.com/view8/M02/29/28/wKhkGWcoiVGALjs-AAHg60dIeaQ9112.jpg)
![第24章 解直角三角形 華師大版數(shù)學(xué)九年級上冊教案_第3頁](http://file4.renrendoc.com/view8/M02/29/28/wKhkGWcoiVGALjs-AAHg60dIeaQ9113.jpg)
![第24章 解直角三角形 華師大版數(shù)學(xué)九年級上冊教案_第4頁](http://file4.renrendoc.com/view8/M02/29/28/wKhkGWcoiVGALjs-AAHg60dIeaQ9114.jpg)
![第24章 解直角三角形 華師大版數(shù)學(xué)九年級上冊教案_第5頁](http://file4.renrendoc.com/view8/M02/29/28/wKhkGWcoiVGALjs-AAHg60dIeaQ9115.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
解直角三角形※教學(xué)目標(biāo)※【知識與技能】1.進一步理解銳角三角函數(shù)的定義,知道特殊角的三角函數(shù)值,能夠根據(jù)某一個三角函數(shù)值,熟練求出其他兩個三角函數(shù)值.2.進一步扎實掌握同一個銳角三角函數(shù)之間的關(guān)系和互余兩角三角函數(shù)之間的關(guān)系,并能利用它們進行計算或證明.3.能熟練根據(jù)直角三角形的邊角關(guān)系解直角三角形,并能運用這些關(guān)系解決一些應(yīng)用問題.4.進一步了解仰角、俯角、坡度、坡角等概念,能熟練利用解直角三角形的知識去解決實際問題.【教學(xué)重點】銳角三角函數(shù)的定義,特殊角的三角函數(shù)值,解直角三角形及解直角三角形的應(yīng)用.【教學(xué)難點】同角三角函數(shù)之間的關(guān)系以及互余兩角三角函數(shù)之間的關(guān)系,解直角三角形在實際中的應(yīng)用及輔助線的添加方法.※教學(xué)過程※一、知識體系圖解二、知識專題復(fù)習(xí)專題一求銳角三角函數(shù)值【例1】如圖,在△ABC中,AD是邊BC上的高,E為邊AC的中點,BC=14,AD=12,sinB=.求:(1)線段DC的長;(2)tan∠EDC的值.分析:(1)要求DC的長,先求BD的長,再根據(jù)DC=BC-BD來求;(2)DE為AC中線,則DE=EC,故∠EDC=∠C,tan∠EDC=tanC.解:(1)在Rt△BDA中,∵∠BDA=90°,AD=12,sinB=,∴AB=15,BD==9,∴DC=BC-BD=5.(2)在Rt△ADC中,∠ADC=90°,tanC=.∵DE是Rt△ADC斜邊AC上的中線,∴DE=AC=EC.∴∠EDC=∠C.∴tan∠EDC=tanC=.【歸納拓展】求一個銳角的三角函數(shù)值,就是根據(jù)三角函數(shù)的定義,在直角三角形中,求相應(yīng)兩邊的比,當(dāng)這個角不在某個直角三角形中時,可利用等角轉(zhuǎn)換的方法,求某個直角三角形中和這個角相等的角的相應(yīng)三角函數(shù)值,也可通過作輔助線構(gòu)造直角三角形解,當(dāng)這個角是特殊角時,直接寫出即可.【練習(xí)】如圖,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=,BC=26.求:(1)cos∠DAC的值;(2)線段AD的長.答案:(1)(2)13專題二解直角三角形的應(yīng)用【例2】某市準(zhǔn)備在相距2千米的A、B兩工廠間修一條筆直的公路,但在B地北偏東60°方向、A地北偏西45°方向的C處,有一半徑為0.6千米的住宅小區(qū),如圖,問修筑公路時,這個小區(qū)是否有居民需要搬遷?(參考數(shù)據(jù):≈1.41,≈1.73)分析:這是一道說理題,要通過計算作出說明.居民是否搬遷,就是看點C到直線AB的距離與0.6的關(guān)系,所以求出點C到AB的距離是解題的關(guān)鍵,為此需要作CD⊥AB于D.解:過點C作CD⊥AB于D,∴AD=CD·tan45°=CD,BD=CD·tan60°=CD.∵BD+AD=AB=2,即CD+CD=2,∴CD=≈1.73-1=0.73>0.6.答:修的公路不會穿越小區(qū),故該小區(qū)居民不需搬遷.【歸納拓展】解直角三角形的應(yīng)用就是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,在解直角三角形的應(yīng)用題時,大部分問題都可轉(zhuǎn)化為以下兩個基本圖形.【練習(xí)】青青草原上,灰太狼每天都想著如何抓羊,而且是屢敗屢試,永不言棄.如圖,一天,灰太狼在自家城堡頂部A處測得懶羊羊所在地B處的俯角為60°,然后下到城堡的C處,測得B處的俯角為30°.已知AC=40米,若灰太狼以5m/s的速度從城堡底部D處出處,幾秒鐘后能抓到懶羊羊?(結(jié)果精確到個位)答案:t=≈7(s).專題三方程思想【例3】如圖,在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一點,DE⊥AB于E,CD=DE,AC+CD=9,求BE、CE的長.分析:由sinB=,可設(shè)DE=CD=3k,DB=5k,則BC=8k,AC=6k,AB=10k,再由AC+CD=9,可列出以k為未知數(shù)的方程,進而求出各邊長.在Rt△BDE中,由勾股定理求BE的長.過C作CF⊥AB于F,再用勾股定理求CE的長.解:∵sinB=,∠ACB=90°,DE⊥AB,∴sinB=.設(shè)DE=CD=3k,則DB=5k.∴CB=8k,∴AC=6k,AB=10k.∵AC+CD=9,∴6k+3k=9,∴k=1.在Rt△BDE中,DE=3,DB=5,∴BE=4.過C作CF⊥AB于F,則CF∥DE,∴,求得CF=,BF=,∴EF=.在Rt△CEF中,CE=.【歸納拓展】在解決數(shù)學(xué)問題時,有一種從未知數(shù)轉(zhuǎn)化為已知的手段就是通過設(shè)元,尋找已知與未知之間的等量關(guān)系,構(gòu)造方程或方程組,然后求解方程完成未知向已知的轉(zhuǎn)化,這種解決問題的思想就是方程思想.有些幾何問題表面上看起來與代數(shù)問題無關(guān),但是要利用代數(shù)方法一一列方程來解決,因此要善于挖掘隱含條件,要具有方程的思想意識,還有一些綜合問題需要通過構(gòu)造方程來解決.【練習(xí)】如圖,在比水平高2m的A地,觀察河對岸一直立的樹BC頂部B的仰角為30°,它在水中的倒影B′C的頂部B′的俯角是45°,根據(jù)這一情景,你能求出樹高BC嗎?(結(jié)果保留根號)答案:專題四方案設(shè)計題【例4】如圖,山上有一座鐵塔,山腳下有一矩形建筑物ABCD,且建筑物周圍沒有開闊平整地帶.該建筑物頂端寬度AD和高度DC都可直接測得,從A、D、C三點可看到塔頂端H.可供使用的測量工具有皮尺、測傾器.(1)請你根據(jù)現(xiàn)有條件,充分利用矩形建筑物,設(shè)計一個測量塔頂端到地面的高度HG的方案,具體要求如下:①測量數(shù)據(jù)盡可能少;②在所給圖形上,畫出你設(shè)計的測量平面圖,并將應(yīng)測數(shù)據(jù)標(biāo)記在圖形上(如果測A、D間距離,用m表示;如果測D、C間距離,用n表示;如果測角,用α、β、γ表示).(2)根據(jù)你測量的數(shù)據(jù),計算塔頂端到地面的高度HG.(用字母表示,測傾器高度忽略不計).解:方案一:(1)如圖甲(測三個數(shù)據(jù):n、α、β).(2)設(shè)HG=k,在Rt△CHG中,CG=;在RtDHM中,DM=,方案二:(1)如圖乙(測四個數(shù)據(jù):m、n、a、γ).(2)設(shè)HG=k,在Rt△AHM中,AM=;在Rt△DHM中,DM=,【歸納拓展】熟讀題目,理解題意是解題的前提.設(shè)計方案時要盡可能和已學(xué)過的基本圖形聯(lián)系起來,測量工具的選擇要結(jié)合實際情況,特別要注意設(shè)計的方案必須考慮環(huán)境、條件的限制.【練習(xí)】如圖,A、B是兩幢地平高度相等,隔岸相望的建筑物,B樓不能到達,由于建筑物密集,在A樓的周圍沒有開闊地帶.為了測量B的高度,只能充分利用A樓的空間,A的各層樓都可到達且能看見,現(xiàn)僅有的測量工具為皮尺和測角器.(皮尺可用于測
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代企業(yè)如何通過公關(guān)活動吸引目標(biāo)客戶
- 理論與實踐在文化傳承中尋求創(chuàng)新發(fā)展
- 國慶節(jié)鮮奶活動方案策劃
- Module5 Unit1 He is playing the suona,but the phone rings(說課稿)-2023-2024學(xué)年外研版(三起)英語六年級下冊
- 8《上課了》說課稿-2023-2024學(xué)年道德與法治一年級上冊統(tǒng)編版001
- 2023九年級數(shù)學(xué)上冊 第23章 圖形的相似23.4 中位線說課稿 (新版)華東師大版
- 9 知法守法 依法維權(quán) 說課稿 -2023-2024學(xué)年道德與法治六年級上冊(統(tǒng)編版)
- 2024年四年級英語上冊 Module 4 The world around us Unit 11 Shapes說課稿 牛津滬教版(三起)
- Unit8 I can do this for you 第三課時(說課稿)-2024-2025學(xué)年譯林版(三起)(2024)英語三年級上冊
- 3 光的傳播會遇到阻礙嗎 說課稿-2024-2025學(xué)年科學(xué)五年級上冊教科版
- 城市基礎(chǔ)設(shè)施修繕工程的重點與應(yīng)對措施
- GB 12710-2024焦化安全規(guī)范
- 2022年中考化學(xué)模擬卷1(南京專用)
- 2023年主治醫(yī)師(中級)-眼科學(xué)(中級)代碼:334考試歷年真題集錦附答案
- 電力安全工作規(guī)程-(電網(wǎng)建設(shè)部分)
- 新加坡小學(xué)二年級英語試卷practice 2
- 小學(xué)五年級英語20篇英文閱讀理解(答案附在最后)
- 2023年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語)試題庫含答案解析
- GB/T 23800-2009有機熱載體熱穩(wěn)定性測定法
- T-SFSF 000012-2021 食品生產(chǎn)企業(yè)有害生物風(fēng)險管理指南
- 水庫工程施工組織設(shè)計
評論
0/150
提交評論