版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
-------------------------------------------------------------------奮斗沒有終點(diǎn)任何時(shí)候都是一個(gè)起點(diǎn)-----------------------------------------------------信達(dá)全等三角形問題中常見的輔助線的作法(有答案)總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗(yàn)。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。1.等腰三角形“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題2.倍長中線:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形3.角平分線在三種添輔助線4.垂直平分線聯(lián)結(jié)線段兩端5.用“截長法”或“補(bǔ)短法”:遇到有二條線段長之和等于第三條線段的長,6.圖形補(bǔ)全法:有一個(gè)角為60度或120度的把該角添線后構(gòu)成等邊三角形7.角度數(shù)為30、60度的作垂線法:遇到三角形中的一個(gè)角為30度或60度,可以從角一邊上一點(diǎn)向角的另一邊作垂線,目的是構(gòu)成30-60-90的特殊直角三角形,然后計(jì)算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個(gè)角。從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。8.計(jì)算數(shù)值法:遇到等腰直角三角形,正方形時(shí),或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常計(jì)算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個(gè)角,從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,二個(gè)角之間的相等。遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”法構(gòu)造全等三角形.遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”法構(gòu)造全等三角形.遇到角平分線在三種添輔助線的方法,(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”,所考知識(shí)點(diǎn)常常是角平分線的性質(zhì)定理或逆定理.(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對(duì)全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一對(duì)全等三角形。過圖形上某一點(diǎn)作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”截長法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.已知某線段的垂直平分線,那么可以在垂直平分線上的某點(diǎn)向該線段的兩個(gè)端點(diǎn)作連線,出一對(duì)全等三角形。特殊方法:在求有關(guān)三角形的定值一類的問題時(shí),常把某點(diǎn)到原三角形各頂點(diǎn)的線段連接起來,利用三角形面積的知識(shí)解答.一、倍長中線(線段)造全等例1、(“希望杯”試題)已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.例2、如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點(diǎn),試比較BE+CF與EF的大小.例3、如圖,△ABC中,BD=DC=AC,E是DC的中點(diǎn),求證:AD平分∠BAE.應(yīng)用:1、(崇文二模)以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點(diǎn).探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.(1)如圖①當(dāng)為直角三角形時(shí),AM與DE的位置關(guān)系是,線段AM與DE的數(shù)量關(guān)系是;(2)將圖①中的等腰Rt繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)(0<<90)后,如圖②所示,(1)問中得到的兩個(gè)結(jié)論是否發(fā)生改變?并說明理由.二、截長補(bǔ)短1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC2、如圖,AD∥BC,EA,EB分別平分∠DAB,∠CBA,CD過點(diǎn)E,求證;AB=AD+BC。3、如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP4、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證:5、如圖在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點(diǎn),求證;AB-AC>PB-PC應(yīng)用:三、平移變換例1AD為△ABC的角平分線,直線MN⊥AD于A.E為MN上一點(diǎn),△ABC周長記為,△EBC周長記為.求證>.例2如圖,在△ABC的邊上取兩點(diǎn)D、E,且BD=CE,求證:AB+AC>AD+AE.四、借助角平分線造全等1、如圖,已知在△ABC中,∠B=60°,△ABC的角平分線AD,CE相交于點(diǎn)O,求證:OE=OD2、如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)說明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的長.應(yīng)用:1、如圖①,OP是∠MON的平分線,請(qǐng)你利用該圖形畫一對(duì)以O(shè)P所在直線為對(duì)稱軸的全等三角形。請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問題:(1)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F。請(qǐng)你判斷并寫出FE與FD之間的數(shù)量關(guān)系;(第23題圖)OPAMN(第23題圖)OPAMNEBCDFACEFBD圖①圖②圖③五、旋轉(zhuǎn)例1正方形ABCD中,E為BC上的一點(diǎn),F(xiàn)為CD上的一點(diǎn),BE+DF=EF,求∠EAF的度數(shù).例2D為等腰斜邊AB的中點(diǎn),DM⊥DN,DM,DN分別交BC,CA于點(diǎn)E,F。當(dāng)繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證DE=DF。若AB=2,求四邊形DECF的面積。例3如圖,是邊長為3的等邊三角形,是等腰三角形,且,以D為頂點(diǎn)做一個(gè)角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則的周長為;應(yīng)用:1、已知四邊形中,,,,,,繞點(diǎn)旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于.當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段,又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.(圖(圖1)(圖2)(圖3)2、(西城一模)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).(1)如圖,當(dāng)∠APB=45°時(shí),求AB及PD的長;(2)當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大小.3、在等邊的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為外一點(diǎn),且,,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動(dòng)時(shí),BM、NC、MN之間的數(shù)量關(guān)系及的周長Q與等邊的周長L的關(guān)系.圖1圖2圖3(=1\*ROMANI)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是;此時(shí);(=2\*ROMANII)如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DMDN時(shí),猜想(=1\*ROMANI)問的兩個(gè)結(jié)論還成立嗎?寫出你的猜想并加以證明;(=3\*ROMANIII)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時(shí),若AN=,則Q=(用、L表示).參考答案與提示一、倍長中線(線段)造全等例1、(“希望杯”試題)已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.解:延長AD至E使AE=2AD,連BE,由三角形性質(zhì)知AB-BE<2AD<AB+BE故AD的取值范圍是1<AD<4例2、如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點(diǎn),試比較BE+CF與EF的大小.解:(倍長中線,等腰三角形“三線合一”法)延長FD至G使FG=2EF,連BG,EG,顯然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三線合一知EG=EF在△BEG中,由三角形性質(zhì)知EG<BG+BE故:EF<BE+FC例3、如圖,△ABC中,BD=DC=AC,E是DC的中點(diǎn),求證:AD平分∠BAE.解:延長AE至G使AG=2AE,連BG,DG,顯然DG=AC,∠GDC=∠ACD由于DC=AC,故∠ADC=∠DAC在△ADB與△ADG中,BD=AC=DG,AD=AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE應(yīng)用:1、(崇文二模)以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點(diǎn).探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.(1)如圖①當(dāng)為直角三角形時(shí),AM與DE的位置關(guān)系是,線段AM與DE的數(shù)量關(guān)系是;(2)將圖①中的等腰Rt繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)(0<<90)后,如圖②所示,(1)問中得到的兩個(gè)結(jié)論是否發(fā)生改變?并說明理由.解:(1),;證明:延長AM到G,使,連BG,則ABGC是平行四邊形GCHABGCHABDMNE又∵∴再證:∴,延長MN交DE于H∵∴∴(2)結(jié)論仍然成立.證明:如圖,延長CA至F,使,F(xiàn)A交DE于點(diǎn)P,并連接BF∵,∴∵在和中FCFCPABDMNE∴(SAS)∴,∴∴又∵,∴,且∴,二、截長補(bǔ)短1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC解:(截長法)在AB上取中點(diǎn)F,連FD△ADB是等腰三角形,F(xiàn)是底AB中點(diǎn),由三線合一知DF⊥AB,故∠AFD=90°△ADF≌△ADC(SAS)∠ACD=∠AFD=90°即:CD⊥AC2、如圖,AD∥BC,EA,EB分別平分∠DAB,∠CBA,CD過點(diǎn)E,求證;AB=AD+BC解:(截長法)在AB上取點(diǎn)F,使AF=AD,連FE△ADE≌△AFE(SAS)∠ADE=∠AFE,∠ADE+∠BCE=180°∠AFE+∠BFE=180°故∠ECB=∠EFB△FBE≌△CBE(AAS)故有BF=BC從而;AB=AD+BC3、如圖,已知在△ABC內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP解:(補(bǔ)短法,計(jì)算數(shù)值法)延長AB至D,使BD=BP,連DP在等腰△BPD中,可得∠BDP=40°從而∠BDP=40°=∠ACP△ADP≌△ACP(ASA)故AD=AC又∠QBC=40°=∠QCB故BQ=QCBD=BP從而BQ+AQ=AB+BP4、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證:解:(補(bǔ)短法)延長BA至F,使BF=BC,連FD△BDF≌△BDC(SAS)故∠DFB=∠DCB,F(xiàn)D=DC又AD=CD故在等腰△BFD中∠DFB=∠DAF故有∠BAD+∠BCD=180°5、如圖在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點(diǎn),求證;AB-AC>PB-PC解:(補(bǔ)短法)延長AC至F,使AF=AB,連PD△ABP≌△AFP(SAS)故BP=PF由三角形性質(zhì)知PB-PC=PF-PC<CF=AF-AC=AB-AC應(yīng)用:DEACBDEACBF解:有連接AC,過E作并AC于F點(diǎn)則可證為等邊三角形即,∴DEACBDEACB∴又∵∴在與中,,∴∴∴點(diǎn)評(píng):此題的解法比較新穎,把梯形的問題轉(zhuǎn)化成等邊三角形的問題,然后利用全等三角形的性質(zhì)解決。三、平移變換例1AD為△ABC的角平分線,直線MN⊥AD于A.E為MN上一點(diǎn),△ABC周長記為,△EBC周長記為.求證>.解:(鏡面反射法)延長BA至F,使AF=AC,連FEAD為△ABC的角平分線,MN⊥AD知∠FAE=∠CAE故有△FAE≌△CAE(SAS)故EF=CE在△BEF中有:BE+EF>BF=BA+AF=BA+AC從而PB=BE+CE+BC>BF+BC=BA+AC+BC=PA例2如圖,在△ABC的邊上取兩點(diǎn)D、E,且BD=CE,求證:AB+AC>AD+AE.證明:取BC中點(diǎn)M,連AM并延長至N,使MN=AM,連BN,DN.∵BD=CE,∴DM=EM,∴△DMN≌△EMA(SAS),∴DN=AE,同理BN=CA.延長ND交AB于P,則BN+BP>PN,DP+PA>AD,相加得BN+BP+DP+PA>PN+AD,各減去DP,得BN+AB>DN+AD,∴AB+AC>AD+AE。四、借助角平分線造全等1、如圖,已知在△ABC中,∠B=60°,△ABC的角平分線AD,CE相交于點(diǎn)O,求證:OE=OD,DC+AE=AC證明(角平分線在三種添輔助線,計(jì)算數(shù)值法)∠B=60度,則∠BAC+∠BCA=120度;AD,CE均為角平分線,則∠OAC+∠OCA=60度=∠AOE=∠COD;∠AOC=120度.在AC上截取線段AF=AE,連接OF.又AO=AO;∠OAE=∠OAF.則⊿OAE≌ΔOAF(SAS),OE=OF;AE=AF;∠AOF=∠AOE=60度.則∠COF=∠AOC-∠AOF=60度=∠COD;又CO=CO;∠OCD=∠OCF.故⊿OCD≌ΔOCF(SAS),OD=OF;CD=CF.OE=ODDC+AE=CF+AF=AC.2、如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)說明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的長.解:(垂直平分線聯(lián)結(jié)線段兩端)連接BD,DCDG垂直平分BC,故BD=DC由于AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,故有ED=DF故RT△DBE≌RT△DFC(HL)故有BE=CF。AB+AC=2AEAE=(a+b)/2BE=(a-b)/2應(yīng)用:1、如圖①,OP是∠MON的平分線,請(qǐng)你利用該圖形畫一對(duì)以O(shè)P所在直線為對(duì)稱軸的全等三角形。請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問題:(1)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F。請(qǐng)你判斷并寫出FE與FD之間的數(shù)量關(guān)系;(第23題圖)OPAMN(第23題圖)OPAMNEBCDFACEFBD圖①圖②圖③解:(1)FE與FD之間的數(shù)量關(guān)系為(2)答:(1)中的結(jié)論仍然成立。證法一:如圖1,在AC上截取,連結(jié)FG∵,AF為公共邊,∴∴,F(xiàn)BEACD圖12143GFBEACD圖12143G∴∴∴∵及FC為公共邊∴∴∴證法二:如圖2,過點(diǎn)F分別作于點(diǎn)G,于點(diǎn)HFBEACD圖22143HFBEACD圖22143HG∴可得,F(xiàn)是的內(nèi)心∴,又∵∴∴可證∴五、旋轉(zhuǎn)例1正方形ABCD中,E為BC上的一點(diǎn),F(xiàn)為CD上的一點(diǎn),BE+DF=EF,求∠EAF的度數(shù).證明:將三角形ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90度,至三角形ABG則GE=GB+BE=DF+BE=EF又AE=AE,AF=AG,所以三角形AEF全等于AEG所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF又∠EAF+∠BAE+∠DAF=90所以∠EAF=45度例2D為等腰斜邊AB的中點(diǎn),DM⊥DN,DM,DN分別交BC,CA于點(diǎn)E,F。(1)當(dāng)繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證DE=DF。(2)若AB=2,求四邊形DECF的面積。解:(計(jì)算數(shù)值法)(1)連接DC,D為等腰斜邊AB的中點(diǎn),故有CD⊥AB,CD=DACD平分∠BCA=90°,∠ECD=∠DCA=45°由于DM⊥DN,有∠EDN=90°由于CD⊥AB,有∠CDA=90°從而∠CDE=∠FDA=故有△CDE≌△ADF(ASA)故有DE=DF(2)S△ABC=2,S四DECF=S△ACD=1例3如圖,是邊長為3的等邊三角形,是等腰三角形,且,以D為頂點(diǎn)做一個(gè)角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則的周長為;解:(圖形補(bǔ)全法,“截長法”或“補(bǔ)短法”,計(jì)算數(shù)值法)AC的延長線與BD的延長線交于點(diǎn)F,在線段CF上取點(diǎn)E,使CE=BM∵△ABC為等邊三角形,△BCD為等腰三角形,且∠BDC=120°,
∴∠MBD=∠MBC+∠DBC=60°+30°=90°,
∠DCE=180°-∠ACD=180°-∠ABD=90°,
又∵BM=CE,BD=CD,
∴△CDE≌△BDM,
∴∠CDE=∠BDM,DE=DM,
∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,
∵在△DMN和△DEN中,
DM=DE
∠MDN=∠EDN=60°
DN=DN∴△DMN≌△DEN,
∴MN=NE∵在△DMA和△DEF中,
DM=DE
∠MDA=60°-
∠MDB=60°-
∠CDE=∠EDF(∠CDE=∠BDM)
∠DAM=∠DFE=30°∴△DMN≌△DEN(AAS),
∴MA=FE的周長為AN+MN+AM=AN+NE+EF=AF=6應(yīng)用:1、已知四邊形中,,,,,,繞點(diǎn)旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于.當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段,又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.(圖(圖1)(圖2)(圖3)解:(1)∵,,,∴(SAS);∴,∵,∴,為等邊三角形∴,∴(2)圖2成立,圖3不成立。證明圖2,延長DC至點(diǎn)K,使,連接BKKABKABCDEFMN圖2∴,∵,∴∴∴∴∴∴即圖3不成立,AE、CF、EF的關(guān)系是2、(西城一模)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).(1)如圖,當(dāng)∠APB=45°時(shí),求AB及PD的長;(2)當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大小.分析:(1)作輔助線,過點(diǎn)A作于點(diǎn)E,在中,已知,AP的值,根據(jù)三角函數(shù)可將AE,PE的值求出,由PB的值,可求BE的值,在中,根據(jù)勾股定理可將AB的值求出;求PD的值有兩種解法,解法一:可將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到,可得,求PD長即為求的長,在中,可將的值求出,在中,根據(jù)勾股定理可將的值求出;解法二:過點(diǎn)P作AB的平行線,與DA的延長線交于F,交PB于G,在中,可求出AG,EG的長,進(jìn)而可知PG的值,在中,可求出PF,在中,根據(jù)勾股定理可將PD的值求出;(2)將繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到,PD的最大值即為的最大值,故當(dāng)、P、B三點(diǎn)共線時(shí),取得最大值,根據(jù)可求的最大值,此時(shí).EPADCEPADCB∵中,,∴∵∴在中,∴P′PACBDE②解法一:如圖,因?yàn)樗倪呅蜛BCD為正方形,可將將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到,,可得,P′PACBDE∴,,∴,∴;解法二:如圖,過點(diǎn)P作AB的平行線,與DA的延長線交于F,設(shè)DA的延長線交PB于G.GFPACBDE在GFPACBDE在中,可得,在中,可得(2)如圖所示,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到,PD的最大值,即為的最大值∵中,,,且P、D兩點(diǎn)落在直線AB的兩側(cè)∴當(dāng)、P、B三點(diǎn)共線時(shí),取得最大值(如圖)PP′PACBDP′PACBD此時(shí),即的最大值為6此時(shí)3、在等邊的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為外一點(diǎn),且,,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動(dòng)時(shí),BM、NC、MN之間的數(shù)量關(guān)系及的周長Q與等邊的周長L的關(guān)系.圖1圖2圖3(=1\*ROMANI)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是;此時(shí);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西門子杯S120培訓(xùn)
- 10 巴黎奧運(yùn)-2025年中考英語新熱點(diǎn)時(shí)文閱讀
- 2024年山東省淄博市中考化學(xué)試題卷(含答案解析 ) +2023年中考化學(xué)及答案
- 天津市紅橋區(qū)2024-2025學(xué)年八年級(jí)上期中-生物試卷
- 2024年江蘇省淮安市中考語文試題卷(含答案解析)+2023年中考語文及答案
- 2024年聚合工藝?yán)碚摽荚?00題及答案
- 質(zhì)量管理體系過程方法和風(fēng)險(xiǎn)思維專業(yè)解讀與應(yīng)用之34:9績效評(píng)價(jià)-9.1監(jiān)視、測(cè)量、分析和評(píng)價(jià)-9.1.3分析與評(píng)價(jià)(雷澤佳編制-2024B1)
- 關(guān)于城鎮(zhèn)道路工程與質(zhì)量驗(yàn)收規(guī)范及新增改表格
- Windows Server網(wǎng)絡(luò)管理項(xiàng)目教程(Windows Server 2022)(微課版)8.5 拓展案例1 RDS的RemoteApp功能
- 心理健康教案
- FUJI-FLEXA編程流程-課件
- 畜牧業(yè)的信息化與數(shù)字化管理
- 2023年4月自考00155中級(jí)財(cái)務(wù)會(huì)計(jì)試題及答案
- 新婦聯(lián)活動(dòng)自我介紹范文通用6篇
- 共和國勛章獲得者申紀(jì)蘭
- 津巴布韋地區(qū)金礦開發(fā)投資項(xiàng)目可行性研究報(bào)告
- 安徽省江淮十校2024屆高三第二次聯(lián)考試題生物
- 大學(xué)生信息安全競(jìng)賽創(chuàng)新實(shí)踐能力賽題庫(附答案)
- 人工智能與物聯(lián)網(wǎng)的融合發(fā)展
- 腎結(jié)石一病一品
- 鋼管英寸對(duì)照表(全)
評(píng)論
0/150
提交評(píng)論