版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年天舟文化高三4月模擬訓(xùn)練數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫(xiě)成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.2.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知數(shù)列中,,(),則等于()A. B. C. D.24.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}5.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.46.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.7.已知全集為,集合,則()A. B. C. D.8.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.10.若,則“”是“的展開(kāi)式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件11.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點(diǎn),若,則λ+μ的值為()A. B. C. D.12.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.能說(shuō)明“在數(shù)列中,若對(duì)于任意的,,則為遞增數(shù)列”為假命題的一個(gè)等差數(shù)列是______.(寫(xiě)出數(shù)列的通項(xiàng)公式)14.已知拋物線的焦點(diǎn)為,斜率為2的直線與的交點(diǎn)為,若,則直線的方程為_(kāi)__________.15.函數(shù)在區(qū)間上的值域?yàn)開(kāi)_____.16.若,則________,________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).(1)證明:點(diǎn)在軸的右側(cè);(2)設(shè)線段的垂直平分線與軸、軸分別相交于點(diǎn).若與的面積相等,求直線的斜率18.(12分)已知橢圓的左右焦點(diǎn)分別為,焦距為4,且橢圓過(guò)點(diǎn),過(guò)點(diǎn)且不平行于坐標(biāo)軸的直線交橢圓與兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,直線交軸于點(diǎn).(1)求的周長(zhǎng);(2)求面積的最大值.19.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫(xiě)出函數(shù)在上的零點(diǎn)個(gè)數(shù).20.(12分)已知,,(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知銳角的內(nèi)角,,的對(duì)邊分別為,,,且,,求邊上的高的最大值.21.(12分)如圖,在直三棱柱中,,,為的中點(diǎn),點(diǎn)在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.22.(10分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.2.A【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡(jiǎn),求得對(duì)應(yīng)的坐標(biāo),由此判斷對(duì)應(yīng)點(diǎn)所在象限.【詳解】,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)所在象限,屬于基礎(chǔ)題.3.A【解析】
分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問(wèn)題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數(shù)列是以3為周期的周期數(shù)列,
,
,
故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.4.D【解析】
解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.5.D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)?,且在點(diǎn)處的切線的斜率為3,所以,即.故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題6.C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問(wèn)題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.7.D【解析】
對(duì)于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對(duì)于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.8.C【解析】
恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過(guò)導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.9.B【解析】
根據(jù),可知命題的真假,然后對(duì)取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對(duì)命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點(diǎn)睛】本題主要考查對(duì)命題真假的判斷以及真值表的應(yīng)用,識(shí)記真值表,屬基礎(chǔ)題.10.B【解析】
求得的二項(xiàng)展開(kāi)式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開(kāi)式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_(kāi)式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問(wèn)題的能力和計(jì)算能力,難度較易.11.B【解析】
建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點(diǎn)睛】本題主要考查了由平面向量線性運(yùn)算的結(jié)果求參數(shù),屬于中檔題.12.A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.二、填空題:本題共4小題,每小題5分,共20分。13.答案不唯一,如【解析】
根據(jù)等差數(shù)列的性質(zhì)可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說(shuō)明原命題是假命題.所以,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)遞減的數(shù)列,還需檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.14.【解析】
設(shè)直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點(diǎn)橫坐標(biāo)的關(guān)系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設(shè)直線.由題設(shè)得,故,由題設(shè)可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點(diǎn)睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡(jiǎn)單幾何性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.15.【解析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點(diǎn)睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.16.【解析】
根據(jù)誘導(dǎo)公式和二倍角公式計(jì)算得到答案.【詳解】,故.故答案為:;.【點(diǎn)睛】本題考查了誘導(dǎo)公式和二倍角公式,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析(2)【解析】
(1)設(shè)出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點(diǎn)的橫坐標(biāo)即可證出;(2)根據(jù)線段的垂直平分線求出點(diǎn)的坐標(biāo),即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設(shè),,聯(lián)立消去,得,顯然,,則點(diǎn)的橫坐標(biāo),因?yàn)?,所以點(diǎn)在軸的右側(cè).(2)由(1)得點(diǎn)的縱坐標(biāo).即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因?yàn)榕c的面積相等,所以,解得.所以當(dāng)與的面積相等時(shí),直線的斜率.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系的應(yīng)用、根與系數(shù)的關(guān)系應(yīng)用,以及三角形的面積的計(jì)算,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.18.(1)12(2)【解析】
(1)根據(jù)焦距得焦點(diǎn)坐標(biāo),結(jié)合橢圓上的點(diǎn)的坐標(biāo),根據(jù)定義;(2)求出橢圓的標(biāo)準(zhǔn)方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達(dá)定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過(guò)點(diǎn),由橢圓定義知:,故,因此,的周長(zhǎng);(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當(dāng)且僅當(dāng)在短軸頂點(diǎn)處取等,故面積的最大值為.【點(diǎn)睛】此題考查根據(jù)橢圓的焦點(diǎn)和橢圓上的點(diǎn)的坐標(biāo)求橢圓的標(biāo)準(zhǔn)方程,根據(jù)直線與橢圓的交點(diǎn)關(guān)系求三角形面積的最值,涉及韋達(dá)定理的使用,綜合性強(qiáng),計(jì)算量大.19.(Ⅰ);(Ⅱ)證明見(jiàn)解析;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn).【解析】
(Ⅰ)求出導(dǎo)數(shù),寫(xiě)出切線方程;(Ⅱ)二次求導(dǎo),判斷單調(diào)遞減,結(jié)合零點(diǎn)存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【詳解】解:(Ⅰ),,,故在點(diǎn),處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點(diǎn)存在性定理,存在唯一一個(gè)零點(diǎn),,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減,故在只有唯一的一個(gè)極大值;(Ⅲ)函數(shù)在有3個(gè)零點(diǎn).【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,考查零點(diǎn)存在性定理的應(yīng)用,關(guān)鍵是能夠通過(guò)導(dǎo)函數(shù)的單調(diào)性和零點(diǎn)存在定理確定導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù),進(jìn)而確定函數(shù)的單調(diào)性,屬于難題.20.(1)的最小正周期為:;函數(shù)單調(diào)遞增區(qū)間為:;(2).【解析】
(1)根據(jù)誘導(dǎo)公式,結(jié)合二倍角的正弦公式、輔助角公式把函數(shù)的解析式化簡(jiǎn)成余弦型函數(shù)解析式形式,利用余弦型函數(shù)的最小正周期公式和單調(diào)性進(jìn)行求解即可;(2)由(1)結(jié)合,求出的大小,再根據(jù)三角形面積公式,結(jié)合余弦定理和基本不等式進(jìn)行求解即可.【詳解】(1)的最小正周期為:;當(dāng)時(shí),即當(dāng)時(shí),函數(shù)單調(diào)遞增,所以函數(shù)單調(diào)遞增區(qū)間為:;(2)因?yàn)?,所以設(shè)邊上的高為,所以有,由余弦定理可知:(當(dāng)用僅當(dāng)時(shí),取等號(hào)),所以,因此邊上的高的最大值.【點(diǎn)睛】本題考查了正弦的二倍角公式、誘導(dǎo)公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.21.見(jiàn)解析【解析】
(1)如圖,連接,交于點(diǎn),連接,,則為的中點(diǎn),因?yàn)闉榈闹悬c(diǎn),所以,又,所以,從而,,,四點(diǎn)共面.因?yàn)槠矫妫矫?,平面平面,所以.又,所以四邊形為平行四邊形,所以,所以?)因?yàn)椋瑸榈闹悬c(diǎn),所以,又三棱柱是直三棱柱,,所以,,互相垂直,分別以,,的方向?yàn)檩S、軸、軸的正方向,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 與疾病診斷和治療有關(guān)的醫(yī)療檢測(cè)服務(wù)行業(yè)經(jīng)營(yíng)分析報(bào)告
- 農(nóng)業(yè)生態(tài)防治行業(yè)相關(guān)項(xiàng)目經(jīng)營(yíng)管理報(bào)告
- 醫(yī)用球囊導(dǎo)管用充氣裝置產(chǎn)業(yè)鏈招商引資的調(diào)研報(bào)告
- 2024內(nèi)蒙古產(chǎn)業(yè)技術(shù)創(chuàng)新中心(內(nèi)蒙古自治區(qū)科學(xué)技術(shù)檢測(cè)實(shí)驗(yàn)中心)招聘5名專(zhuān)業(yè)技術(shù)人員筆試模擬試題及答案解析
- 2023-2024學(xué)年北京豐臺(tái)區(qū)高三(上)期中生物試題和答案
- 學(xué)生個(gè)性發(fā)展與班主任支持計(jì)劃
- 醫(yī)療耗材行業(yè)月個(gè)人工作計(jì)劃
- 班級(jí)藝術(shù)節(jié)的策劃與實(shí)施計(jì)劃
- 修理車(chē)賠償協(xié)議書(shū)范文
- 銀行房貸協(xié)商協(xié)議書(shū)范文范本
- 2025年九省聯(lián)考新高考 語(yǔ)文試卷(含答案解析)
- 工業(yè)視覺(jué)系統(tǒng)運(yùn)維員-國(guó)家職業(yè)標(biāo)準(zhǔn)(2023年版)
- 六年級(jí)數(shù)學(xué)上冊(cè)(滬教版2024)-【新教材解讀】義務(wù)教育教材內(nèi)容解讀課件
- 行政復(fù)議法-形考作業(yè)4-國(guó)開(kāi)(ZJ)-參考資料
- 工作秘密事項(xiàng)清單范文(6篇)
- 16.《材料的導(dǎo)熱性》課件-2021-2022學(xué)年科學(xué)五年級(jí)上冊(cè)-青島版(五四制)
- 博格?。ㄕ憬┥锛夹g(shù)有限公司年產(chǎn)50000升凝膠、3000公斤干粉純化分離介質(zhì)建設(shè)項(xiàng)目報(bào)告書(shū)
- 七年級(jí)道德與法治單元作業(yè)設(shè)計(jì)上課講義
- 混合氣充裝操作規(guī)程
- (最新)疫苗驗(yàn)收管理制度
- 人民醫(yī)院會(huì)診中心實(shí)施方案
評(píng)論
0/150
提交評(píng)論