高考數(shù)學(xué)全真模擬試題第12592期_第1頁
高考數(shù)學(xué)全真模擬試題第12592期_第2頁
高考數(shù)學(xué)全真模擬試題第12592期_第3頁
高考數(shù)學(xué)全真模擬試題第12592期_第4頁
高考數(shù)學(xué)全真模擬試題第12592期_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

單選題(共8個(gè),分值共:)1、函數(shù)的定義域?yàn)椋?/p>

)A.B.C.D.2、已知函數(shù)其中.若對(duì)任意的都有,則實(shí)數(shù)的取值范圍是(

)A.B.C.D.3、“”是“”的(

)A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件4、已知,則下列關(guān)系中正確的是(

)A.B.C.D.5、下列函數(shù)是奇函數(shù),且在上單調(diào)遞增的是(

)A.B.C.D.6、已知冪函數(shù)在上為增函數(shù),則(

)A.2B.4C.6D.87、若定義在的奇函數(shù)在單調(diào)遞減,且,則滿足的的取值范圍是(

)A.B.C.D.8、高斯函數(shù)也稱取整函數(shù),記作,是指不超過實(shí)數(shù)x的最大整數(shù),例如,該函數(shù)被廣泛應(yīng)用于數(shù)論、函數(shù)繪圖和計(jì)算機(jī)領(lǐng)域.下列關(guān)于高斯函數(shù)的性質(zhì)敘述錯(cuò)誤的是(

)A.值域?yàn)閆B.不是奇函數(shù)C.為周期函數(shù)D.在R上單調(diào)遞增多選題(共4個(gè),分值共:)9、已知函數(shù),且對(duì)任意都有,則(

)A.的最小正周期為B.在上單調(diào)遞增C.是的一個(gè)零點(diǎn)D.10、在中,下列說法正確的是(

)A.若,則B.若,則C.若,則為鈍角三角形D.存在滿足11、已知i為虛數(shù)單位,以下四個(gè)說法中正確的是(

)A.B.復(fù)數(shù)的虛部為C.若,則復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限D(zhuǎn).已知復(fù)數(shù)z滿足,則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的軌跡為直線12、在四邊形中(如圖1所示),,,,將四邊形沿對(duì)角線折成四面體(如圖2所示),使得,E,F(xiàn),G分別為棱,,的中點(diǎn),連接,,則下列結(jié)論正確的是(

)A.B.直線與所成角的余弦值為C.C,E,F(xiàn),G四點(diǎn)共面D.四面體外接球的表面積為雙空題(共4個(gè),分值共:)13、已知函數(shù)是偶函數(shù).(1)______.(2)若在區(qū)間上單調(diào)遞減,則的取值范圍是______.14、已知,則______;若,則______.15、如圖所示,在等腰直角中,為的中點(diǎn),,分別為線段上的動(dòng)點(diǎn),且.(1)當(dāng)時(shí),則的值為__________.(2)的最大值為__________.解答題(共6個(gè),分值共:)16、如圖,已知正方體(1)求異面直線與所成的角;(2)證明:平面ABCD;17、已知函數(shù).(1)若,求實(shí)數(shù)的取值范圍;(2)若關(guān)于的不等式的解集為(-1,4),求實(shí)數(shù),的值.18、已知(1)求的值;(2)若,求的值.19、已知函數(shù).(1)討論的奇偶性;(2)當(dāng)時(shí),判斷在上的單調(diào)性,并給出證明.20、已知函數(shù).(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;(2)若f(x)在區(qū)間上的最小值為1,求m的最小值.21、化簡下列各式:(1);(2).雙空題(共4個(gè),分值共:)22、已知單位向量滿足,則與夾角的大小為________;的最小值為______.

高考數(shù)學(xué)全真模擬試題參考答案1、答案:C解析:利用函數(shù)解析式有意義可得出關(guān)于實(shí)數(shù)的不等式組,由此可解得原函數(shù)的定義域.由已知可得,即,因此,函數(shù)的定義域?yàn)?故選:C.2、答案:B解析:根據(jù)增函數(shù)的定義可得在上為增函數(shù),再根據(jù)分段函數(shù)的單調(diào)性列式可解得結(jié)果.因?yàn)閷?duì)任意的都有,所以,即,所以在上為增函數(shù),所以,因?yàn)椋?故選:B小提示:關(guān)鍵點(diǎn)點(diǎn)睛:抓住分段函數(shù)分界點(diǎn)的函數(shù)值的大小關(guān)系是解題關(guān)鍵,屬于基礎(chǔ)題.3、答案:A解析:根據(jù)“”和“”的邏輯推理關(guān)系,即可判斷答案.由可以推出,但反之不成立,故“”是“”的充分不必要條件,故選:A4、答案:C解析:均化為以為底的形式,然后利用指數(shù)函數(shù)在上為減函數(shù),而,從而可比較大小解:,,而函數(shù)在上為減函數(shù),又,所以,即.故選:C.5、答案:D解析:利用冪函數(shù)的單調(diào)性和奇函數(shù)的定義即可求解.當(dāng)時(shí),冪函數(shù)為增函數(shù);當(dāng)時(shí),冪函數(shù)為減函數(shù),故在上單調(diào)遞減,、和在上單調(diào)遞增,從而A錯(cuò)誤;由奇函數(shù)定義可知,和不是奇函數(shù),為奇函數(shù),從而BC錯(cuò)誤,D正確.故選:D.6、答案:A解析:由于冪函數(shù)在在上為增函數(shù),所以可得,求出的值,從而可求出冪函數(shù)的解析式,進(jìn)而可求得答案由題意得,得,則,.故選:A7、答案:A解析:首先根據(jù)函數(shù)的性質(zhì),確定和的解集,再轉(zhuǎn)化不等式求解集.為上的奇函數(shù),且在單調(diào)遞減,,,且在上單調(diào)遞減,所以或,或,可得,或,即,或,即,故選:A.8、答案:D解析:根據(jù)高斯函數(shù)的定義,結(jié)合值域、函數(shù)的奇偶性、函數(shù)的單調(diào)性對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).由高斯函數(shù)的定義可知其值域?yàn)閆,故A正確;不是奇函數(shù),故B正確;易知,所以是一個(gè)周期為1的周期函數(shù),故C正確;當(dāng)時(shí),,所以在R上不單調(diào),故D錯(cuò)誤.故選:D9、答案:ACD解析:由已知可得,化簡可得,化簡函數(shù)解析式為,利用正弦型函數(shù)的基本性質(zhì)可判斷各選項(xiàng)的正誤.由題意可知函數(shù)的圖象關(guān)于直線對(duì)稱,則,即,整理可得,即,所以,,,所以,,D選項(xiàng)正確;,故函數(shù)的最小正周期為,故A選項(xiàng)正確;當(dāng)時(shí),可得,若,則函數(shù)在上單調(diào)遞減,故B選項(xiàng)錯(cuò)誤;,故是的一個(gè)零點(diǎn),故C選項(xiàng)正確.故選:ACD.小提示:思路點(diǎn)睛:三角函數(shù)圖象與性質(zhì)問題的求解思路:(1)將函數(shù)解析式變形為或的形式;(2)將看成一個(gè)整體;(3)借助正弦函數(shù)或余弦函數(shù)的圖象和性質(zhì)(如定義域、值域、最值、周期性、對(duì)稱性、單調(diào)性等)解決相關(guān)問題.10、答案:ABC解析:根據(jù)大角對(duì)大邊,以及正弦定理,判斷選項(xiàng)A;利用余弦定理和正弦定理邊角互化,判斷選項(xiàng)B;結(jié)合誘導(dǎo)公式,以及三角函數(shù)的單調(diào)性判斷CD.A.,,根據(jù)正弦定理,可知,故A正確;B.,,即,由正弦定理邊角互化可知,故B正確;C.當(dāng)時(shí),,即,即,則為鈍角三角形,若,,即成立,是鈍角,當(dāng)是,,所以綜上可知:若,則為鈍角三角形,故C正確;D.,,,即,故D不正確.故選:ABC小提示:關(guān)鍵點(diǎn)點(diǎn)睛:本題考查判斷三角形的形狀,關(guān)鍵知識(shí)點(diǎn)是正弦定理和余弦定理,判斷三角形形狀,以及誘導(dǎo)公式和三角函數(shù)的單調(diào)性.11、答案:AD解析:根據(jù)復(fù)數(shù)的概念、運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).A選項(xiàng),,故A選項(xiàng)正確.B選項(xiàng),的虛部為,故B選項(xiàng)錯(cuò)誤.C選項(xiàng),,對(duì)應(yīng)坐標(biāo)為在第三象限,故C選項(xiàng)錯(cuò)誤.D選項(xiàng),表示到和兩點(diǎn)的距離相等,故的軌跡是線段的垂直平分線,故D選項(xiàng)正確.故選:AD12、答案:AB解析:A:取的中點(diǎn),連接,,證明平面即可;B:設(shè),,,將與表示出來,利用向量法求夾角;C:連接GF,顯然GF和CE異面,故四點(diǎn)不共面;D:易證中點(diǎn)為該四面體外接球的球心,則可求其半徑和表面積.如圖,取的中點(diǎn),連接,.對(duì)于A,∵為等腰直角三角形,為等邊三角形,∴,,,∵,∴平面,∴,故A正確;對(duì)于B,設(shè),,,則,,,,,,∴,,故B正確.對(duì)于C,連接,∥BD,∴GF和顯然是異面直線,∴C,E,F(xiàn),G四點(diǎn)不共面,故C錯(cuò)誤.對(duì)于D,易證△,∴.取的中點(diǎn)Q,則,即Q為四面體外接球的球心,∴該外接球的半徑,從而可知該球的表面積,故D錯(cuò)誤.故選:AB.13、答案:

解析:(1)利用偶函數(shù)的性質(zhì)即可求解;(2)求出的單調(diào)遞減區(qū)間,在區(qū)間上單調(diào)遞減,便可知是函數(shù)單調(diào)區(qū)間的子集,便可求解.(1)解:設(shè),,則是偶函數(shù)(2)如圖所示:的單調(diào)遞減區(qū)間為:或若,則可得,解得;若,則可得,解得;所以在區(qū)間上單調(diào)遞減,則的取值范圍是故答案為:(1);(2).14、答案:

4

1或解析:直接代入函數(shù)即可求得的值;根據(jù)分段函數(shù)每一段的自變量的范圍,對(duì)進(jìn)行分類討論,分別求出相應(yīng)的的值即可.∵,∴;∵,∴當(dāng)時(shí),,解得,當(dāng)時(shí),,解得.故答案為:4;1或.15、答案:

解析:第一個(gè)空:過點(diǎn)作于點(diǎn),在Rt中,可求出,從而在中,根據(jù)余弦定理即可求出答案;第二空需要選擇恰當(dāng)?shù)慕嵌缺硎境龅闹?,再利用三角恒等變換以及三角函數(shù)的性質(zhì)求解出最值.當(dāng)時(shí),,過點(diǎn)作于點(diǎn),在Rt中,,,,在中,由余弦定理,得.(2)設(shè),則,過點(diǎn)分別作的垂線于兩點(diǎn),則,在與中,,,所以,所以當(dāng)時(shí),.故答案為:;.16、答案:(1);(2)證明見解析;解析:(1)連結(jié)可得為異面直線所成的角,即可得答案;(2)連結(jié),可得,利用線面平行的判定定理,即可得答案;(1)連結(jié),,為異面直線與所成的角,,異面直線與所成的角為;(2)連結(jié),,平面,平面,平面ABCD;小提示:本題考查異面直線所成的角、線面平行判定定理的應(yīng)用,考查轉(zhuǎn)化與化歸思想,考查空間想象能力,屬于基礎(chǔ)題.17、答案:(1)或;(2),.解析:(1)由得關(guān)于的不等式,解之可得.(2)由一元二次不等式的解集與一元二次方程的解的關(guān)系,利用韋達(dá)定理列式可解得.(1)由已知,∴得或;(2)∵,∴由-1,4是方程的兩根,得,∴,.18、答案:(1)(2)解析:(1)根據(jù)誘導(dǎo)公式化簡題干條件,得到,進(jìn)而求出的值;(2)結(jié)合第一問求出的正切值和,利用同角三角函數(shù)的平方關(guān)系求出正弦和余弦值,進(jìn)而求出結(jié)果.(1)∵∴,化簡得:∴(2)∵,∴為第四象限,故,由得,故19、答案:(1)當(dāng)時(shí),函數(shù)為偶函數(shù);當(dāng)時(shí),函數(shù)既不是奇函數(shù),也不是偶函數(shù)(2)單調(diào)遞增,證明見解析解析:(1)分,,利用奇偶性的定義判斷;(2)利用函數(shù)單調(diào)性的定義證明(1)解:當(dāng)時(shí),.因?yàn)?,所以函?shù)為偶函數(shù);當(dāng)時(shí),,,,所以,所以函數(shù)既不是奇函數(shù),也不是偶函數(shù).(2)當(dāng)時(shí),在上單調(diào)遞增.證明如下:任取,且,則,,.因?yàn)?,所以,,所以,即,所以在上單調(diào)遞增.20、答案:(1).,

.(2)解析:(1)直接利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.(2)利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.(1)由題意,函數(shù),==,所以的最小正周期:.由,解得即函數(shù)的單調(diào)遞減區(qū)間是

.(2)由(1)知,因?yàn)?,所以.要使f(x)在區(qū)間上的最小值為1,即在區(qū)間上的最小值為-1.所以,即.所以m的最小值為.小提示:本題考查了三角函數(shù)關(guān)系式的變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用三角函數(shù)的圖象與性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.21、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論