版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北京市第十二中2024屆高三第一次調(diào)研考試數(shù)學試題文試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.2.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.33.函數(shù)的定義域為,集合,則()A. B. C. D.4.上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術(shù)及先進的數(shù)學水平,也印證了我國古代音律與歷法的密切聯(lián)系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年5.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行6.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學生人數(shù)是()A.45 B.50 C.55 D.607.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.8.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.9.已知命題:,,則為()A., B.,C., D.,10.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.1911.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.12.某校團委對“學生性別與中學生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認為“學生性別與中學生追星無關(guān)”B.有99%以上的把握認為“學生性別與中學生追星有關(guān)”C.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關(guān)”D.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關(guān)”二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,且,則______.14.已知函數(shù)的定義域為R,導函數(shù)為,若,且,則滿足的x的取值范圍為______.15.已知向量與的夾角為,||=||=1,且⊥(λ),則實數(shù)_____.16.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設,且數(shù)列為等比數(shù)列,令,.求證:.18.(12分)已知函數(shù),.(1)當時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.19.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)設數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項和公比;(2)求數(shù)列的通項公式.21.(12分)已知動圓E與圓外切,并與直線相切,記動圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點的直線l交曲線C于A,B兩點,若曲線C上存在點P使得,求直線l的斜率k的取值范圍.22.(10分)設橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.2、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學生的運算能力,是一道容易題.3、A【解析】
根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數(shù)定義域的求法,是基礎題.4、D【解析】
先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識計算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項.【詳解】解:由題意,可設冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計該骨笛的大致年代早于公元前6000年.故選:.【點睛】本題考查利用三角函數(shù)解決實際問題的能力,運用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學建模思想,以及數(shù)學運算能力,屬中檔題.5、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學生的綜合應用能力.6、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題7、C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數(shù)學運算的能力,屬于基礎題.8、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎題.9、C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.10、B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.11、B【解析】
由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計算,屬于基礎題.12、B【解析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學生性別與中學生追星有關(guān)”,故選B.【點睛】本題考查了獨立性檢驗的應用問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點睛】本題考查了等比數(shù)列定義,考查了對數(shù)的運算性質(zhì),考查了等比數(shù)列的通項公式,是中檔題.14、【解析】
構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡不等式,解得結(jié)果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.15、1【解析】
根據(jù)條件即可得出,由即可得出,進行數(shù)量積的運算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點睛】考查向量數(shù)量積的運算及計算公式,以及向量垂直的充要條件.16、【解析】試題分析:根據(jù)題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關(guān)應用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點共線,結(jié)合向量的性質(zhì)可知,從而等價于已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應用基本不等式求得結(jié)果,最后再加,得出最后的答案.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】
(1)利用可得的遞推關(guān)系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質(zhì)可證.【詳解】(1)由題意,得:(t為常數(shù),且),當時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【點睛】數(shù)列的通項與前項和的關(guān)系式,我們常利用這個關(guān)系式實現(xiàn)與之間的相互轉(zhuǎn)化.數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.18、(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導數(shù)研究函數(shù)的單調(diào)性,可得當時,;當時,;當時,.(2)由題意,,在上有唯一零點.利用導數(shù)可得當時,在上單調(diào)遞減,當,時,在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當時,,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當時,,即;當時,,即;當時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當時,,在上單調(diào)遞減,當,時,,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點睛】本題考查利用導數(shù)研究過曲線上某點處的切線方程,考查利用導數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.19、(1)證明見解析,;(2).【解析】
(1)將等式變形為,進而可證明出是等差數(shù)列,確定數(shù)列的首項和公差,可求得的表達式,進而可得出數(shù)列的通項公式;(2)利用錯位相減法可求得數(shù)列的前項和.【詳解】(1)因為,所以,即,所以數(shù)列是等差數(shù)列,且公差,其首項所以,解得;(2),①,②①②,得,所以.【點睛】本題考查利用遞推公式證明等差數(shù)列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.20、(1)(2)【解析】
本題主要考查了等比數(shù)列的通項公式的求解,數(shù)列求和的錯位相減求和是數(shù)列求和中的重點與難點,要注意掌握.(1)設等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語外貿(mào)大學《跨境電商理論與實務》2023-2024學年第一學期期末試卷
- 廣東南華工商職業(yè)學院《電視攝像技術(shù)》2023-2024學年第一學期期末試卷
- 【名師一號】2020-2021學年高中地湘教版必修1-雙基限時練15
- 【2021屆備考】2021屆全國名校生物試題分類解析匯編第七期(12月)-G單元生物的變異
- 【2022走向高考】高三英語一輪(外研版)復習:必修4-Module-6綜合測試
- 第五章 透鏡及其應用 單元測試(含解析) 2024-2025學年物理人教版(2024)八年級上冊
- 【狀元之路】2021高考物理一輪復習課時作業(yè):12-2-機械波
- 《肺癌的手術(shù)治療》課件
- 全國2021屆高三英語試題8、9月分類解析:B單元-完形填空(B1-記敘文)
- 【走向高考】2021屆高考歷史(人民版)一輪復習階段性測試題十二(必修三-專題六、七-專題測試)
- 批評與自我批評表
- 2024年商用密碼應用安全性評估從業(yè)人員考核試題庫-中(多選題)
- Be going to 句型(教學設計)-2023-2024學年人教PEP版英語五年級下冊
- 擦黑板(教案)勞動二年級上冊
- 2023年10月下半年空軍直接選拔招錄軍官筆試歷年典型考題及考點剖析附答案詳解
- 土方清理合同范本
- 防洪排澇項目社會穩(wěn)定風險分析
- 2024年安徽省高中語文學業(yè)水平合格考模擬試卷試題(含答案詳解)
- 流程即組織力(企業(yè)高效增長的業(yè)務管理邏輯)
- 空調(diào)水管道安裝施工方案
- 小學三年級上冊道德與法治期末測試卷及完整答案(有一套)
評論
0/150
提交評論