版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
遼寧省沈陽市南昌中學2024屆中考數(shù)學考前最后一卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個幾何體只能是()A. B. C. D.2.一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象如左圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是()A. B. C. D.3.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.54.計算(-ab2)3÷(-ab)2的結果是()A.a(chǎn)b4B.-ab4C.a(chǎn)b3D.-ab35.如圖,在矩形ABCD中,AB=3,AD=4,點E在邊BC上,若AE平分∠BED,則BE的長為()A. B. C. D.4﹣6.如圖,先鋒村準備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.7.已知為單位向量,=,那么下列結論中錯誤的是()A.∥ B. C.與方向相同 D.與方向相反8.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.9.已知,用尺規(guī)作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.10.某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進行抽查.各組隨機抽取轄區(qū)內(nèi)某三個小區(qū)中的一個進行檢查,則兩個組恰好抽到同一個小區(qū)的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.從﹣2,﹣1,2,0這四個數(shù)中任取兩個不同的數(shù)作為點的坐標,該點不在第三象限的概率是_____.12.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.13.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.14.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.15.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°16.某種水果的售價為每千克a元,用面值為50元的人民幣購買了3千克這種水果,應找回元(用含a的代數(shù)式表示).三、解答題(共8題,共72分)17.(8分)一輛高鐵與一輛動車組列車在長為1320千米的京滬高速鐵路上運行,已知高鐵列車比動車組列車平均速度每小時快99千米,且高鐵列車比動車組列車全程運行時間少3小時,求這輛高鐵列車全程運行的時間和平均速度.18.(8分)中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:頻數(shù)頻率分布表成績x(分)頻數(shù)(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據(jù)所給信息,解答下列問題:(1)m=,n=;(2)補全頻數(shù)分布直方圖;(3)這200名學生成績的中位數(shù)會落在分數(shù)段;(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學生中成績是“優(yōu)”等的約有多少人?19.(8分)當=,b=2時,求代數(shù)式的值.20.(8分)已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值21.(8分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結果;(2)求一次打開鎖的概率.22.(10分)已知:不等式≤2+x(1)求不等式的解;(2)若實數(shù)a滿足a>2,說明a是否是該不等式的解.23.(12分)如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?24.如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項A正確,故選A.考點:幾何體的三視圖2、B【解析】
根據(jù)題中給出的函數(shù)圖像結合一次函數(shù)性質(zhì)得出a<0,b>0,再由反比例函數(shù)圖像性質(zhì)得出c<0,從而可判斷二次函數(shù)圖像開口向下,對稱軸:>0,即在y軸的右邊,與y軸負半軸相交,從而可得答案.【詳解】解:∵一次函數(shù)y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數(shù)y=圖像經(jīng)過二、四象限,∴c<0,∴二次函數(shù)對稱軸:>0,∴二次函數(shù)y=ax2+bx+c圖像開口向下,對稱軸在y軸的右邊,與y軸負半軸相交,故答案為B.【點睛】本題考查了二次函數(shù)的圖形,一次函數(shù)的圖象,反比例函數(shù)的圖象,熟練掌握二次函數(shù)的有關性質(zhì):開口方向、對稱軸、與y軸的交點坐標等確定出a、b、c的情況是解題的關鍵.3、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B4、B【解析】根據(jù)積的乘方的運算法則,先分別計算積的乘方,然后再根據(jù)單項式除法法則進行計算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.5、D【解析】
首先根據(jù)矩形的性質(zhì),可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據(jù)AE平分∠BED求得ED=AD;利用勾股定理求得EC的長,進而求得BE的長.【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【點睛】本題考查了矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應用,解題的關鍵是熟練的掌握矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應用.6、D【解析】
利用所給的角的余弦值求解即可.【詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【點睛】本題主要考查學生對坡度、坡角的理解及運用.7、C【解析】
由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯誤,故選C.【點睛】本題考查了向量的方向,是基礎題,較簡單.8、A【解析】
由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質(zhì),屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關系是解題關鍵.9、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.10、C【解析】分析:將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區(qū)的結果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為.故選:C.點睛:此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
列舉出所有情況,看在第四象限的情況數(shù)占總情況數(shù)的多少即可.【詳解】如圖:共有12種情況,在第三象限的情況數(shù)有2種,
故不再第三象限的共10種,
不在第三象限的概率為,
故答案為.【點睛】本題考查了樹狀圖法的知識,解題的關鍵是列出樹狀圖求出概率.12、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.13、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質(zhì),勾股定理,兩點之間線段最短的性質(zhì).得出動點P所在的位置是解題的關鍵.14、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).15、B【解析】
根據(jù)平行線的性質(zhì)即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點睛】考查平行線的性質(zhì),解題的關鍵是熟練掌握平行線的性質(zhì),屬于中考基礎題.16、(50-3a).【解析】試題解析:∵購買這種售價是每千克a元的水果3千克需3a元,∴根據(jù)題意,應找回(50-3a)元.考點:列代數(shù)式.三、解答題(共8題,共72分)17、這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.【解析】
設動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據(jù)時間=路程÷速度結合高鐵列車比動車組列車全程運行時間少3小時,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論.【詳解】設動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據(jù)題意得:﹣=3,解得:x1=161,x2=﹣264(不合題意,舍去),經(jīng)檢驗,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.【點睛】本題考查了列分式方程解實際問題的運用及分式方程的解法的運用,解答時根據(jù)條件建立方程是關鍵,解答時對求出的根必須檢驗,這是解分式方程的必要步驟.18、(1)70,0.2;(2)補圖見解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根據(jù)第一組的頻數(shù)是10,頻率是0.05,求得數(shù)據(jù)總數(shù),再用數(shù)據(jù)總數(shù)乘以第四組頻率可得m的值,用第三組頻數(shù)除以數(shù)據(jù)總數(shù)可得n的值;(2)根據(jù)(1)的計算結果即可補全頻數(shù)分布直方圖;(3)根據(jù)中位數(shù)的定義,將這組數(shù)據(jù)按照從小到大的順序排列后,處于中間位置的數(shù)據(jù)(或中間兩數(shù)據(jù)的平均數(shù))即為中位數(shù);(4)利用總數(shù)3000乘以“優(yōu)”等學生的所占的頻率即可.詳解:(1)本次調(diào)查的總人數(shù)為10÷0.05=200,則m=200×0.35=70,n=40÷200=0.2,(2)頻數(shù)分布直方圖如圖所示,(3)200名學生成績的中位數(shù)是第100、101個成績的平均數(shù),而第100、101個數(shù)均落在80≤x<90,∴這200名學生成績的中位數(shù)會落在80≤x<90分數(shù)段,(4)該校參加本次比賽的3000名學生中成績“優(yōu)”等的約有:3000×0.25=750(人).點睛:本題考查讀頻數(shù)(率)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了中位數(shù)和利用樣本估計總體.19、,6﹣3.【解析】原式==,當a=,b=2時,原式.20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)將P(4,-1)代入,可求出解析式
(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.
(3)觀察圖象可得,當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據(jù)對稱軸在不同位置進行討論即可.【詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當-1≤x≤2時,y隨著x的增大而減小當x=-1時,y=a+(4a+1)+3=4+5a當x=2時,y=4a-2(4a+1)+3=1-4a所以當-1≤x≤2時,1-4a≤y≤4+5a;(3)當a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當x=0,x=1或x=-時,拋物線上的點可能離x軸最遠分別代入可得,當x=0時,y=3當x=1時,y=b+4當x=-時,y=-+3①當一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當,即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關鍵是對稱軸在不同的范圍內(nèi),拋物線上的點到x軸距離的最大值的點不同.21、(1)詳見解析(2)【解析】
設兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出樹形圖,再根據(jù)概率公式求解即可.【詳解】(1)設兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出如下樹形圖:由上圖可知,上述試驗共有8種等可能結果;(2)由(1)可知,任意取出一把鑰匙去開任意一把鎖共有8種可能的結果,一次打開鎖的結果有2種,且所有結果的可能性相等.∴P(一次打開鎖)=.【點睛】如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.22、(1)x≥﹣1;(2)a是不等式的解.【解析】
(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.
(2)根據(jù)不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號得:2﹣x≤6+3x,移項、合并同類項得:﹣4x≤4,系數(shù)化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【點睛】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關鍵23、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版專業(yè)長期借款協(xié)議模板大全版B版
- 職業(yè)學院關于雙師素質(zhì)教師隊伍建設實施辦法
- 2024年離崗創(chuàng)業(yè)事業(yè)單位人員合同3篇
- 2024年版標準協(xié)議格式樣本指導書版B版
- 2024年離婚證明英文版
- 2024版學校教學樓建設合同服務內(nèi)容擴展
- 2024年藝術品銷售外包服務合同范本3篇
- 2024陶瓷制品線上銷售與推廣合同
- 2024年稻米訂購協(xié)議3篇
- EPC工程總承包項目運作模式研究
- XX市“互聯(lián)網(wǎng)+”-土地二級市場交易建設方案
- 2023-2024學年度第一學期四年級數(shù)學寒假作業(yè)
- 大學軍事理論課教程第三章軍事思想第三節(jié)中國古代軍事思想
- 駕駛員勞務派遣投標方案
- 續(xù)簽勞動合同意見征詢書
- 水封式排水器的研究
- 導線三角高程計算表(表內(nèi)自帶計算公式)
- 小學數(shù)學課堂教學評價表
- 鋼管裝卸安全管理規(guī)定
- 2023-2024學年浙江省余姚市小學語文三年級期末自測試卷附參考答案和詳細解析
- 學校安全事故報告和調(diào)查處理制度(四篇)
評論
0/150
提交評論