江西省南昌市2024屆中考聯考數學試卷含解析_第1頁
江西省南昌市2024屆中考聯考數學試卷含解析_第2頁
江西省南昌市2024屆中考聯考數學試卷含解析_第3頁
江西省南昌市2024屆中考聯考數學試卷含解析_第4頁
江西省南昌市2024屆中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省南昌市2024屆中考聯考數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數為()A.34° B.56° C.66° D.54°2.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④3.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應關系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發(fā),同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次4.若a與﹣3互為倒數,則a=()A.3 B.﹣3 C.13 D.-5.點P(1,﹣2)關于y軸對稱的點的坐標是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)6.在一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機地摸出一個小球然后放回,再隨機地摸出一個小球.則兩次摸出的小球的標號的和等于6的概率為()A. B. C. D.7.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(8.關于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.29.在1-7月份,某種水果的每斤進價與出售價的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份10.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數關系式是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.“若實數a,b,c滿足a<b<c,則a+b<c”,能夠說明該命題是假命題的一組a,b,c的值依次為_____.12.已知實數x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.13.釣魚島周圍海域面積約為170000平方千米,170000用科學記數法表示為______.14.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.15.如圖,在△ABC中,∠A=60°,若剪去∠A得到四邊形BCDE,則∠1+∠2=______.16.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數y1和過P,A兩點的二次函數y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數的最大值之和等于__.三、解答題(共8題,共72分)17.(8分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.18.(8分)如圖,正方形ABCD中,E,F分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.19.(8分)如圖,小明今年國慶節(jié)到青城山游玩,乘坐纜車,當登山纜車的吊箱經過點A到達點B時,它經過了200m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續(xù)由點B到達點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結果保留整數)(參考數據:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)20.(8分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調查,根據學生參與課外輔導科目的數量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據調查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:(1)本次被調查的學員共有人;在被調查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.21.(8分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.22.(10分)某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如下表:類型價格進價(元/盞)售價(元/盞)A型3045B型5070(1)若商場預計進貨款為3500元,則這兩種臺燈各進多少盞.(2)若設商場購進A型臺燈m盞,銷售完這批臺燈所獲利潤為P,寫出P與m之間的函數關系式.(3)若商場規(guī)定B型燈的進貨數量不超過A型燈數量的4倍,那么A型和B型臺燈各進多少盞售完之后獲得利潤最多?此時利潤是多少元.23.(12分)如圖,一次函數y=﹣12x+52的圖象與反比例函數y=(1)求反比例函數的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.24.小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內,小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.2、D【解析】試題分析:首先要理解清楚題意,知道總的客車數量及總的人數不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.3、D【解析】

A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.4、D【解析】試題分析:根據乘積是1的兩個數互為倒數,可得3a=1,∴a=13故選C.考點:倒數.5、C【解析】關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,由此可得P(1,﹣2)關于y軸對稱的點的坐標是(﹣1,﹣2),故選C.【點睛】本題考查了關于坐標軸對稱的點的坐標,正確地記住關于坐標軸對稱的點的坐標特征是關鍵.關于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數;關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數.6、C【解析】列舉出所有情況,看兩次摸出的小球的標號的和等于6的情況數占總情況數的多少即可.解:共16種情況,和為6的情況數有3種,所以概率為.故選C.7、C【解析】利用正方形的性質結合銳角三角函數關系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數關系,得出正方形的邊長變化規(guī)律是解題關鍵.8、D【解析】

解不等式得到x≥m+3,再列出關于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點:不等式的解集9、B【解析】

解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.10、D【解析】

根據圖象可設二次函數的頂點式,再將點(0,0)代入即可.【詳解】解:根據圖象,設函數解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據實際拋物線形,求函數解析式,解題的關鍵是正確設出函數解析式.二、填空題(本大題共6個小題,每小題3分,共18分)11、答案不唯一,如1,2,3;【解析】分析:設a,b,c是任意實數.若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,舉例即可,本題答案不唯一詳解:設a,b,c是任意實數.若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,可設a,b,c的值依次1,2,3,(答案不唯一),故答案為1,2,3.點睛:本題考查了命題的真假,舉例說明即可,12、1或2【解析】

先根據非負數的性質列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【詳解】根據題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時,三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時,三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.【點睛】本題考查了等腰三角形的性質,絕對值與算術平方根的非負性,根據幾個非負數的和等于0,則每一個算式都等于0求出x、y的值是解題的關鍵,難點在于要分情況討論并且利用三角形的三邊關系進行判斷.13、【解析】解:將170000用科學記數法表示為:1.7×1.故答案為1.7×1.14、1【解析】

在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.

故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據紅球的頻率得到相應的等量關系.15、240.【解析】

試題分析:∠1+∠2=180°+60°=240°.考點:1.三角形的外角性質;2.三角形內角和定理.16、2【解析】

連接PB、PC,根據二次函數的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據等邊三角形的性質求解即可.【詳解】解:如圖,連接PB、PC,由二次函數的性質,OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數的最值問題,等邊三角形的判定與性質,解直角三角形,作輔助線構造出等邊三角形并利用等邊三角形的知識求解是解題的關鍵.三、解答題(共8題,共72分)17、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據平行四邊形的性質求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,理由是:∵MA=MB,若M不為L與DB的交點,則三點B、M、D構成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時,差值最大,設直線BD的解析式是y=kx+b,把B、D的坐標代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標為(1,﹣83答:M的坐標為(1,﹣83考點:二次函數綜合題.18、(1)見解析;(2)正方形的邊長為.【解析】

(1)由正方形的性質得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結果.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【點睛】本題考查了正方形的性質、全等三角形的判定與性質、相似三角形的判定與性質、勾股定理等知識,熟練掌握正方形的性質,證明三角形全等與相似是解題的關鍵.19、纜車垂直上升了186m.【解析】

在Rt中,米,在Rt中,即可求出纜車從點A到點D垂直上升的距離.【詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應該是BC+DF=186(米).答:纜車垂直上升了186米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,銳角三角函數的定義,結合圖形理解題意是解決問題的關鍵.20、(1)50,10;(2)見解析.(3)16.8萬【解析】

(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖中的參加“3科”課外輔導人數及百分比,求得總人數為50人;再由總人數減去參加“1科”,“2科”,“4科”課外輔導人數即可求出答案.(2)由(1)知在被調查者中參加“3科”課外輔導的有10人,由扇形統(tǒng)計圖可知參加“4科”課外輔導人數占比為10%,故參加“4科”課外輔導人數的有5人.(3)因為參加“1科”和“2科”課外輔導人數占比為,所以全市參與輔導科目不多于2科的人數為24×=16.8(萬).【詳解】解:(1)本次被調查的學員共有:15÷30%=50(人),在被調查者中參加“3科”課外輔導的有:50﹣15﹣20﹣50×10%=10(人),故答案為50,10;(2)由(1)知在被調查者中參加“3科”課外輔導的有10人,在被調查者中參加“4科”課外輔導的有:50×10%=5(人),補全的條形統(tǒng)計圖如右圖所示;(3)24×=16.8(萬),答:參與輔導科目不多于2科的學生大約有16.8人.【點睛】本題考察了條形統(tǒng)計圖和扇形統(tǒng)計圖,關鍵在于將兩者結合起來解題.21、(1)詳見解析;(2)【解析】

(1)根據正方形的性質和等腰直角三角形的性質以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質和四邊形周長解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,FD=DE,∴△CDF≌△ADE(SAS);(2)如圖,連接AC.∵四邊形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC=,∴AC=2,∴OA+OC=OA+OE=AE=,∴四邊形ABCO的周長AB+BC+OA+OC=.【點睛】本題考查了正方形的性質,全等三角形的判定與性質,等腰直角三角形的性質,難點在于(2)作輔助線構造出全等三角形.22、(1)應購進A型臺燈75盞,B型臺燈25盞;(2)P=﹣5m+2000;(3)商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【解析】

(1)設商場應購進A型臺燈x盞,表示出B型臺燈為(100-x)盞,然后根據進貨款=A型臺燈的進貨款+B型臺燈的進貨款列出方程求解即可;(2)根據題意列出方程即可;

(3)設商場銷售完這批臺燈可獲利y元,根據獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據一次函數的增減性求出獲利的最大值.【詳解】解:(1)設商場應購進A型臺燈x盞,則B型臺燈為(100﹣x)盞,根據題意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:應購進A型臺燈75盞,B型臺燈25盞;(2)設商場銷售完這批臺燈可獲利P元,則P=(45﹣30)m+(70﹣50)(100﹣m),=15m+200

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論