2024屆河北省淶水波峰中學(xué)高三(上)期末教學(xué)統(tǒng)一檢測試題數(shù)學(xué)試題試卷_第1頁
2024屆河北省淶水波峰中學(xué)高三(上)期末教學(xué)統(tǒng)一檢測試題數(shù)學(xué)試題試卷_第2頁
2024屆河北省淶水波峰中學(xué)高三(上)期末教學(xué)統(tǒng)一檢測試題數(shù)學(xué)試題試卷_第3頁
2024屆河北省淶水波峰中學(xué)高三(上)期末教學(xué)統(tǒng)一檢測試題數(shù)學(xué)試題試卷_第4頁
2024屆河北省淶水波峰中學(xué)高三(上)期末教學(xué)統(tǒng)一檢測試題數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023屆河北省淶水波峰中學(xué)高三(上)期末教學(xué)統(tǒng)一檢測試題數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.2.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-53.若函數(shù),在區(qū)間上任取三個實(shí)數(shù),,均存在以,,為邊長的三角形,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知,滿足約束條件,則的最大值為A. B. C. D.5.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.6.上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國古代音律與歷法的密切聯(lián)系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽光線)與春秋分日光(當(dāng)日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應(yīng)的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年7.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.8.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)()A.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個單位長度9.使得的展開式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.10.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.11.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.12.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進(jìn)行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實(shí)上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),曲線與直線相交,若存在相鄰兩個交點(diǎn)間的距離為,則可取到的最大值為__________.14.設(shè)的內(nèi)角的對邊分別為,,.若,,,則_____________15.秦九韶算法是南宋時期數(shù)學(xué)家秦九韶提出的一種多項(xiàng)式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項(xiàng)式值的一個實(shí)例,若輸入,的值分別為4,5,則輸出的值為______.16.已知橢圓,,若橢圓上存在點(diǎn)使得為等邊三角形(為原點(diǎn)),則橢圓的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點(diǎn),點(diǎn),,,動點(diǎn)滿足,點(diǎn)為線段的中點(diǎn),拋物線:上點(diǎn)的縱坐標(biāo)為,.(1)求動點(diǎn)的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;(2)若拋物線的準(zhǔn)線上一點(diǎn)滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.18.(12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).(1)求的值及圓的方程;(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.19.(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.22.(10分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點(diǎn),的平面與棱,分別交于,兩點(diǎn).(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因?yàn)?,所以因?yàn)樗裕?,,時故選:【點(diǎn)睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.2.C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.3.D【解析】

利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域?yàn)椋?,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實(shí)數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時,成立,即,且,解得.所以的取值范圍是.故選:D【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.4.D【解析】

作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.5.A【解析】

由題先畫出基本圖形,結(jié)合向量加法和點(diǎn)乘運(yùn)算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點(diǎn)睛】本題考查向量的線性運(yùn)算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題6.D【解析】

先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識計(jì)算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項(xiàng).【詳解】解:由題意,可設(shè)冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計(jì)該骨笛的大致年代早于公元前6000年.故選:.【點(diǎn)睛】本題考查利用三角函數(shù)解決實(shí)際問題的能力,運(yùn)用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學(xué)建模思想,以及數(shù)學(xué)運(yùn)算能力,屬中檔題.7.B【解析】

由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.8.B【解析】

分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),

得到再將得到的圖象向左平移個單位長度得到故選B.點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.9.B【解析】二項(xiàng)式展開式的通項(xiàng)公式為,若展開式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時,n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.10.B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.11.A【解析】

聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)椋?,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.12.D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點(diǎn)睛】本題主要考查了判斷與推理的問題,重點(diǎn)是找到三人中都提到的內(nèi)容進(jìn)行分類討論,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】

由于曲線與直線相交,存在相鄰兩個交點(diǎn)間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結(jié)合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點(diǎn)睛】此題考查正弦函數(shù)的圖像和性質(zhì)的應(yīng)用及三角方程的求解,熟練應(yīng)用三角函數(shù)的圖像和性質(zhì)是解題的關(guān)鍵,考查了推理能力和計(jì)算能力,屬于中檔題.14.或【解析】試題分析:由,則可運(yùn)用同角三角函數(shù)的平方關(guān)系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點(diǎn):運(yùn)用正弦定理解三角形.(注意多解的情況判斷)15.1055【解析】

模擬執(zhí)行程序框圖中的程序,即可求得結(jié)果.【詳解】模擬執(zhí)行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【點(diǎn)睛】本題考查程序框圖的模擬執(zhí)行,屬基礎(chǔ)題.16.【解析】

根據(jù)題意求出點(diǎn)N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)曲線的標(biāo)準(zhǔn)方程為.拋物線的標(biāo)準(zhǔn)方程為.(2)見解析【解析】

(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點(diǎn)P的軌跡W是橢圓,寫出橢圓的標(biāo)準(zhǔn)方程,根據(jù)平面向量數(shù)量積運(yùn)算和點(diǎn)A在拋物線上求出拋物線C的標(biāo)準(zhǔn)方程;(2)設(shè)出點(diǎn)P的坐標(biāo),再表示出點(diǎn)N和Q的坐標(biāo),根據(jù)題意求出的值,即可判斷結(jié)果是否成立.【詳解】(1)由題知,,所以,因此動點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,又知,,所以曲線的標(biāo)準(zhǔn)方程為.又由題知,所以,所以,又因?yàn)辄c(diǎn)在拋物線上,所以,所以拋物線的標(biāo)準(zhǔn)方程為.(2)設(shè),,由題知,所以,即,所以,又因?yàn)椋?,所以,所以為定值,且定值?.【點(diǎn)睛】本題考查了圓錐曲線的定義與性質(zhì)的應(yīng)用問題,考查拋物線的幾何性質(zhì)及點(diǎn)在曲線上的代換,也考查了推理與運(yùn)算能力,是中檔題.18.(1)2,;(2)證明見解析.【解析】

(1)由題意得的方程為,根據(jù)為拋物線過焦點(diǎn)的弦,以為直徑的圓與相切于點(diǎn)..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設(shè),的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點(diǎn)N的坐標(biāo)為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設(shè),的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點(diǎn)N的坐標(biāo)為,所以,,故.【點(diǎn)睛】本題主要考查拋物線的定義幾何性質(zhì)以及直線與拋物線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.19.(1)(2)【解析】

(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點(diǎn)睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長的范圍問題.屬于中檔題.20.(1)當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】

(1)對求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域?yàn)?,因?yàn)椋?,?dāng)時,令,得,令,得;當(dāng)時,則,令,得,或,令,得;當(dāng)時,,當(dāng)時,則,令,得;綜上所述,當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時,設(shè),又因?yàn)?,則,設(shè),則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因?yàn)椋?,即,又在遞增,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點(diǎn)偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.21.(1)(2)(3)直線平面,證明見解析【解析】

取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,求出平面的一個法向量.(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點(diǎn),連接,則,為等邊三角形,,又平面平面,且平面平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論