版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省保定市長城高級中學(xué)2024屆高三下學(xué)期第一次綜合測試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點(diǎn)對稱C.周期為 D.在上是增函數(shù)2.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.3.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個(gè)數(shù)為()①②③④⑤A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.5.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.6.已知變量,滿足不等式組,則的最小值為()A. B. C. D.7.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個(gè)不同的住戶屬在鄂返鄉(xiāng)住戶,負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個(gè)住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種8.已知曲線且過定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.9.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.10.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.12.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.50二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標(biāo)系中,某等腰直角三角形的兩個(gè)頂點(diǎn)坐標(biāo)分別為,函數(shù)的圖象經(jīng)過該三角形的三個(gè)頂點(diǎn),則的解析式為___________.14.展開式中,含項(xiàng)的系數(shù)為______.15.已知,滿足,則的展開式中的系數(shù)為______.16.?dāng)?shù)據(jù)的標(biāo)準(zhǔn)差為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.為了預(yù)測在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:時(shí)間1月25日1月26日1月27日1月28日1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)19752744451559747111(?。┊?dāng)1月25日至1月27日這3天的誤差(模型預(yù)測數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請判斷預(yù)防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850718.(12分)已知函數(shù),.(1)若對于任意實(shí)數(shù),恒成立,求實(shí)數(shù)的范圍;(2)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.19.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應(yīng)的變換作用下得到另一曲線,求曲線的方程.20.(12分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時(shí)選擇戴口罩,在一項(xiàng)對人們霧霾天外出時(shí)是否戴口罩的調(diào)查中,共調(diào)查了人,其中女性人,男性人,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關(guān)系并說明理由;(2)根據(jù)統(tǒng)計(jì)數(shù)據(jù)建立一個(gè)列聯(lián)表;(3)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為性別與霧霾天外出戴口罩的關(guān)系.附:21.(12分)某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.據(jù)統(tǒng)計(jì),該公司每年為這一萬名參保人員支出的各種費(fèi)用為一百萬元.年齡(單位:歲)保費(fèi)(單位:元)(1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購買該項(xiàng)保險(xiǎn)(取中的).針對此疾病所支付的費(fèi)用為元;若沒有購買該項(xiàng)保險(xiǎn),針對此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購買此項(xiàng)保險(xiǎn)是否劃算?22.(10分)若不等式在時(shí)恒成立,則的取值范圍是__________.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).2、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.3、B【解析】
滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對稱,分別對所給函數(shù)進(jìn)行驗(yàn)證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點(diǎn)睛】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.4、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.5、D【解析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.6、B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.7、C【解析】
先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個(gè)不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點(diǎn)睛】此題考查的是排列組合知識,解此類題時(shí)一般先組合再排列,屬于基礎(chǔ)題.8、A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.9、D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化簡得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.10、A【解析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】
模擬程序框圖運(yùn)行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點(diǎn)睛】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.12、C【解析】
先寫出的通項(xiàng)公式,再根據(jù)的產(chǎn)生過程,即可求得.【詳解】對二項(xiàng)式,其通項(xiàng)公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查二項(xiàng)展開式中某一項(xiàng)系數(shù)的求解,關(guān)鍵是對通項(xiàng)公式的熟練使用,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
結(jié)合題意先畫出直角坐標(biāo)系,點(diǎn)出所有可能組成等腰直角三角形的點(diǎn),采用排除法最終可確定為點(diǎn),再由函數(shù)性質(zhì)進(jìn)一步求解參數(shù)即可【詳解】等腰直角三角形的第三個(gè)頂點(diǎn)可能的位置如下圖中的點(diǎn),其中點(diǎn)與已有的兩個(gè)頂點(diǎn)橫坐標(biāo)重復(fù),舍去;若為點(diǎn)則點(diǎn)與點(diǎn)的中間位置的點(diǎn)的縱坐標(biāo)必然大于或小于,不可能為,因此點(diǎn)也舍去,只有點(diǎn)滿足題意.此時(shí)點(diǎn)為最大值點(diǎn),所以,又,則,所以點(diǎn),之間的圖像單調(diào),將,代入的表達(dá)式有由知,因此.故答案為:【點(diǎn)睛】本題考查由三角函數(shù)圖像求解解析式,數(shù)形結(jié)合思想,屬于中檔題14、2【解析】
變換得到,展開式的通項(xiàng)為,計(jì)算得到答案.【詳解】,的展開式的通項(xiàng)為:.含項(xiàng)的系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、1【解析】
根據(jù)二項(xiàng)式定理求出,然后再由二項(xiàng)式定理或多項(xiàng)式的乘法法則結(jié)合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理的應(yīng)用是解題關(guān)鍵.16、【解析】
先計(jì)算平均數(shù)再求解方差與標(biāo)準(zhǔn)差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標(biāo)準(zhǔn)差,故答案為:【點(diǎn)睛】本題主要考查了標(biāo)準(zhǔn)差的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護(hù)措施有效【解析】
(1)根據(jù)散點(diǎn)圖即可判斷出結(jié)果.(2)設(shè),則,求出,再由回歸方程過樣本中心點(diǎn)求出,即可求出回歸方程.(3)(?。├帽碇袛?shù)據(jù),計(jì)算出誤差即可判斷回歸方程可靠;(ⅱ)當(dāng)時(shí),,與真實(shí)值作比較即可判斷有效.【詳解】(1)根據(jù)散點(diǎn)圖可知:適宜作為累計(jì)確診人數(shù)與時(shí)間變量的回歸方程類型;(2)設(shè),則,,,;(3)(?。r(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,所以(2)的回歸方程可靠:(ⅱ)當(dāng)時(shí),,10150遠(yuǎn)大于7111,所以防護(hù)措施有效.【點(diǎn)睛】本題考查了函數(shù)模型的應(yīng)用,在求非線性回歸方程時(shí),現(xiàn)將非線性的化為線性的,考查了誤差的計(jì)算以及用函數(shù)模型分析數(shù)據(jù),屬于基礎(chǔ)題.18、(1);(2)不存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直.【解析】
(1)分類時(shí),恒成立,時(shí),分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問題轉(zhuǎn)化為在上有解.再用導(dǎo)數(shù)研究的性質(zhì)可得.【詳解】解:(1)因?yàn)楫?dāng)時(shí),恒成立,所以,若,為任意實(shí)數(shù),恒成立.若,恒成立,即當(dāng)時(shí),,設(shè),,當(dāng)時(shí),,則在上單調(diào)遞增,當(dāng)時(shí),,則在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值.,所以,要使時(shí),恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設(shè),則,當(dāng)時(shí),,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當(dāng)時(shí),,,所以,曲線在點(diǎn)處的切線與軸垂直等價(jià)于方程在上有實(shí)數(shù)解.而,即方程無實(shí)數(shù)解.故不存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直.【點(diǎn)睛】本題考查不等式恒成立,考查用導(dǎo)數(shù)的幾何意義,由導(dǎo)數(shù)幾何把問題進(jìn)行轉(zhuǎn)化是解題關(guān)鍵.本題屬于困難題.19、【解析】
根據(jù),可解得,設(shè)為曲線任一點(diǎn),在矩陣對應(yīng)的變換作用下得到點(diǎn),則點(diǎn)在曲線上,根據(jù)變換的定義寫出相應(yīng)的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設(shè)為曲線任一點(diǎn),則,又設(shè)在矩陣A變換作用得到點(diǎn),則,即,所以即代入,得,所以曲線的方程為.【點(diǎn)睛】本題考查逆矩陣,矩陣與變換等,是基礎(chǔ)題.20、(1)圖形見解析,理由見解析;(2)見解析;(3)犯錯(cuò)誤的概率不超過的前提下認(rèn)為性別與霧霾天外出戴口罩有關(guān)系【解析】
(1)利用等高條形圖中兩個(gè)深顏色條的高比較得出性別與霧霾天外出戴口罩有關(guān)系;(2)填寫列聯(lián)表即可;(3)由表中數(shù)據(jù),計(jì)算觀測值,對照臨
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年年七年級數(shù)學(xué)人教版下冊專題整合復(fù)習(xí)卷27.3 位似(1)(含答案)-
- 研發(fā)團(tuán)隊(duì)有效管理培訓(xùn)
- 幼兒音樂教育活動的策劃計(jì)劃
- 壬二酸行業(yè)相關(guān)投資計(jì)劃提議
- 自然觀察小班孩子的環(huán)境教育計(jì)劃
- 會計(jì)、審計(jì)及稅務(wù)服務(wù)相關(guān)行業(yè)投資方案范本
- 制定企業(yè)社會責(zé)任與人事發(fā)展結(jié)合的計(jì)劃
- 班級成員角色的明確計(jì)劃
- 社區(qū)小型創(chuàng)業(yè)支持的工作方案計(jì)劃
- 教育管理制度培訓(xùn)
- 美團(tuán)合作協(xié)議書范本(2024版)
- 第21課《小圣施威降大圣》課件 2024-2025學(xué)年統(tǒng)編版語文七年級上冊
- AQ/T 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范(正式版)
- 天津市部分區(qū)2022-2023學(xué)年七年級上學(xué)期期末練習(xí)生物試題
- 小學(xué)三年級-安全知識考試試題-(附答案)-
- 醫(yī)院門診醫(yī)生績效考核標(biāo)準(zhǔn)及評分細(xì)則
- MOOC 體育保健學(xué)-江西財(cái)經(jīng)大學(xué) 中國大學(xué)慕課答案
- 廣東省深圳市羅湖區(qū)2022-2023學(xué)年二年級上學(xué)期數(shù)學(xué)期中復(fù)習(xí)試卷
- 康復(fù)科護(hù)理工作總結(jié)及計(jì)劃
- 基于VMI的庫存管理
- 建筑工程鋼結(jié)構(gòu)焊接變形的控制措施
評論
0/150
提交評論