普通高等學(xué)校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第1頁
普通高等學(xué)校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第2頁
普通高等學(xué)校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第3頁
普通高等學(xué)校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第4頁
普通高等學(xué)校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

普通高等學(xué)校2025屆高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對稱中心的充要條件是()A. B.C. D.2.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.3.函數(shù)的圖像大致為()A. B.C. D.4.已知復(fù)數(shù),則()A. B. C. D.25.下列不等式成立的是()A. B. C. D.6.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.7.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.8.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.9.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.10.給出以下四個(gè)命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面;③空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個(gè)數(shù)是()A.0 B.1 C.2 D.311.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.12.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)x,y滿足(2x-y)2+4y14.秦九韶算法是南宋時(shí)期數(shù)學(xué)家秦九韶提出的一種多項(xiàng)式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項(xiàng)式值的一個(gè)實(shí)例,若輸入,的值分別為4,5,則輸出的值為______.15.已知函數(shù)f(x)=axlnx﹣bx(a,b∈R)在點(diǎn)(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.16.在的展開式中,的系數(shù)等于__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)為何值時(shí),軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).18.(12分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時(shí),若對一切恒成立,求a的取值范圍.19.(12分)在平面直角坐標(biāo)系中,已知拋物線C:()的焦點(diǎn)F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點(diǎn),交該拋物線的準(zhǔn)線于D,E兩點(diǎn).(1)求拋物線C的方程;(2)若F在線段上,P是的中點(diǎn),證明:.20.(12分)為提供市民的健身素質(zhì),某市把四個(gè)籃球館全部轉(zhuǎn)為免費(fèi)民用(1)在一次全民健身活動中,四個(gè)籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;(2)設(shè)四個(gè)籃球館一個(gè)月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值參考數(shù)據(jù)和公式:,21.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.22.(10分)在三棱柱中,四邊形是菱形,,,,,點(diǎn)M、N分別是、的中點(diǎn),且.(1)求證:平面平面;(2)求四棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由題可得出的坐標(biāo)為,再利用點(diǎn)對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】

求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡整理的運(yùn)算能力,屬于中檔題.3、A【解析】

根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)?,恒成立,排除,,?dāng)時(shí),,當(dāng),,排除,故選:.【點(diǎn)睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.4、C【解析】

根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.5、D【解析】

根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對于,,,錯(cuò)誤;對于,在上單調(diào)遞減,,錯(cuò)誤;對于,,,,錯(cuò)誤;對于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.6、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.7、A【解析】

設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),,,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點(diǎn)的軌跡方程,將和轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標(biāo)系,設(shè),,,由,可得,即,化簡得點(diǎn)的軌跡方程為,則,則轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,,,轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,.故選:A.【點(diǎn)睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.8、A【解析】

根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.9、D【解析】

根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.10、B【解析】

用空間四邊形對①進(jìn)行判斷;根據(jù)公理2對②進(jìn)行判斷;根據(jù)空間角的定義對③進(jìn)行判斷;根據(jù)空間直線位置關(guān)系對④進(jìn)行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯(cuò)誤.②中,由公理2知道,過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面,故②正確.③中,由空間角的定義知道,空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ),故③錯(cuò)誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯(cuò)誤.故選:B【點(diǎn)睛】本小題考查空間點(diǎn),線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識;考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.11、B【解析】

由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.12、D【解析】

先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當(dāng)2x-y=2y,即x=328故答案為:2.【點(diǎn)睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.14、1055【解析】

模擬執(zhí)行程序框圖中的程序,即可求得結(jié)果.【詳解】模擬執(zhí)行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【點(diǎn)睛】本題考查程序框圖的模擬執(zhí)行,屬基礎(chǔ)題.15、0【解析】

由題意,列方程組可求,即求.【詳解】∵在點(diǎn)處的切線方程為,,代入得①.又②.聯(lián)立①②解得:..故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、7【解析】

由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;(2)令,,然后對實(shí)數(shù)進(jìn)行分類討論,結(jié)合和的符號來確定函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線與軸相切于點(diǎn),則,即,解得.所以,當(dāng)時(shí),軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).綜上所述,當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)或時(shí),函數(shù)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.18、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)【解析】

(1)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系即可求出.(2)解法一:分類討論:當(dāng)時(shí),觀察式子可得恒成立;當(dāng)時(shí),利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,可知;當(dāng)時(shí),令,由,,根據(jù)零點(diǎn)存在性定理可得,進(jìn)而可得在上,單調(diào)遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價(jià)于恒成立,進(jìn)而記,問題轉(zhuǎn)化為求在上的最小值問題,通過二次求導(dǎo),結(jié)合洛比達(dá)法則計(jì)算可得結(jié)論.【詳解】(1)當(dāng),,,,令,解得,當(dāng)時(shí),,當(dāng)時(shí),,在上單調(diào)遞減,在上單調(diào)遞增.(2)解法一:當(dāng)時(shí),函數(shù),若時(shí),此時(shí)對任意都有,所以恒成立;若時(shí),對任意都有,,所以,所以在上為增函數(shù),所以,即時(shí)滿足題意;若時(shí),令,則,所以在上單調(diào)遞增,,,可知,一定存在使得,且當(dāng)時(shí),,所以在上,單調(diào)遞減,從而有時(shí),,不滿足題意;綜上可知,實(shí)數(shù)a的取值范圍為.解法二:當(dāng)時(shí),函數(shù),又當(dāng)時(shí),,對一切恒成立等價(jià)于恒成立,記,其中,則,令,則,在上單調(diào)遞增,,恒成立,從而在上單調(diào)遞增,,由洛比達(dá)法則可知,,,解得.實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數(shù)法等技巧、涉及到洛比達(dá)法則等知識,注意解題方法的積累,屬于難題.19、(1);(2)見解析【解析】

(1)根據(jù)拋物線的焦點(diǎn)在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設(shè)直線,的方程分別為和且,,,可得,,,的坐標(biāo),進(jìn)而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設(shè),,則,根據(jù)直線的斜率不為0,設(shè)出直線的方程為,聯(lián)立直線和拋物線的方程,結(jié)合韋達(dá)定理,分別求出,,化簡,即可得證.【詳解】(1)拋物線C的焦點(diǎn)坐標(biāo)為,且該點(diǎn)在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點(diǎn)F在線段上,可設(shè)直線,的方程分別為和且,,,則,,,.∴直線的方程為,即.又點(diǎn)在線段上,∴.∵P是的中點(diǎn),∴∴,.由于,不重合,所以法二:設(shè),,則當(dāng)直線的斜率為0時(shí),不符合題意,故可設(shè)直線的方程為聯(lián)立直線和拋物線的方程,得又,為該方程兩根,所以,,,.,由于,不重合,所以【點(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線的定義,考查直線與拋物線的位置關(guān)系,屬于中檔題.20、(1)見解析,12.5(2)①②20【解析】

(1)運(yùn)用分層抽樣,結(jié)合總場次為100,可求得的值,再運(yùn)用古典概型的概率計(jì)算公式可求解果;(2)①由公式可計(jì)算的值,進(jìn)而可求與的回歸直線方程;②求出,再對函數(shù)求導(dǎo),結(jié)合單調(diào)性,可估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因?yàn)樗裕?,;②,設(shè),所以當(dāng)遞增,當(dāng)遞減所以約惠值最大值時(shí)的值為20【點(diǎn)睛】本題考查直方圖的實(shí)際應(yīng)用,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論