![河南省鶴壁高中2024年高三五月模擬考試(二)數(shù)學試題試卷_第1頁](http://file4.renrendoc.com/view14/M05/18/19/wKhkGWdFO2WARx4_AAGP80VE9Lw453.jpg)
![河南省鶴壁高中2024年高三五月模擬考試(二)數(shù)學試題試卷_第2頁](http://file4.renrendoc.com/view14/M05/18/19/wKhkGWdFO2WARx4_AAGP80VE9Lw4532.jpg)
![河南省鶴壁高中2024年高三五月模擬考試(二)數(shù)學試題試卷_第3頁](http://file4.renrendoc.com/view14/M05/18/19/wKhkGWdFO2WARx4_AAGP80VE9Lw4533.jpg)
![河南省鶴壁高中2024年高三五月模擬考試(二)數(shù)學試題試卷_第4頁](http://file4.renrendoc.com/view14/M05/18/19/wKhkGWdFO2WARx4_AAGP80VE9Lw4534.jpg)
![河南省鶴壁高中2024年高三五月模擬考試(二)數(shù)學試題試卷_第5頁](http://file4.renrendoc.com/view14/M05/18/19/wKhkGWdFO2WARx4_AAGP80VE9Lw4535.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省鶴壁高中2024年高三五月模擬考試(二)數(shù)學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數(shù)滿足,則復數(shù)等于()A. B. C.2 D.-22.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.3.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.4.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.5.已知等差數(shù)列的前項和為,若,則等差數(shù)列公差()A.2 B. C.3 D.46.函數(shù)的部分圖象大致是()A. B.C. D.7.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.8.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.9.已知集合,,若,則()A.或 B.或 C.或 D.或10.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.11.若sin(α+3π2A.-12 B.-1312.設向量,滿足,,,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個等比數(shù)列的公比為_____.14.已知雙曲線的一條漸近線方程為,則________.15.現(xiàn)有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數(shù)字作答)16.設α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.18.(12分)購買一輛某品牌新能源汽車,在行駛三年后,政府將給予適當金額的購車補貼.某調(diào)研機構對擬購買該品牌汽車的消費者,就購車補貼金額的心理預期值進行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費群體對購車補貼金額的心理預期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費群體中隨機抽取人,記對購車補貼金額的心理預期值高于萬元的人數(shù)為,求的分布列和數(shù)學期望;(3)統(tǒng)計最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.19.(12分)設函數(shù),其中是自然對數(shù)的底數(shù).(Ⅰ)若在上存在兩個極值點,求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點為,證明:.20.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.21.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最???22.(10分)已知函數(shù),.(1)當x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當x<0時,研究函數(shù)F(x)=h(x)﹣g(x)的零點個數(shù);(3)求證:(參考數(shù)據(jù):ln1.1≈0.0953).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
通過復數(shù)的模以及復數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復數(shù)滿足,∴,故選B.【點睛】本題主要考查復數(shù)的基本運算,復數(shù)模長的概念,屬于基礎題.2、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.3、D【解析】
首先判斷循環(huán)結構類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結果與循環(huán)次數(shù)以及的關系,最終得出選項.【詳解】經(jīng)判斷此循環(huán)為“直到型”結構,判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【點睛】題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.4、B【解析】
直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.5、C【解析】
根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.6、C【解析】
判斷函數(shù)的性質(zhì),和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調(diào)性,極值點等排除選項.7、A【解析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.8、A【解析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結合的思想,屬于難題.9、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.10、C【解析】
確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結合函數(shù)的單調(diào)性可得,即,設,,故單調(diào)遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關鍵.11、B【解析】
由三角函數(shù)的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.12、B【解析】
由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
根據(jù)等差數(shù)列關系,用首項和公差表示出,解出首項和公差的關系,即可得解.【詳解】設等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點睛】此題考查等差數(shù)列基本量的計算,涉及等比中項,考查基本計算能力.14、【解析】
根據(jù)雙曲線的標準方程寫出雙曲線的漸近線方程,結合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎題.15、36【解析】
先優(yōu)先考慮甲、乙兩人不相鄰的排法,在此條件下,計算甲不排在兩端的排法,最后相減即可得到結果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【點睛】排列、組合問題由于其思想方法獨特,計算量龐大,對結果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細膩、考慮周全,這樣才能做到不重不漏,正確解題.16、④【解析】
根據(jù)直線和平面,平面和平面的位置關系依次判斷每個選項得到答案.【詳解】對于①,當m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當α∥β,且m?α,n?β時,由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯誤;對于④,當α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【點睛】本題考查了直線和平面,平面和平面的位置關系,意在考查學生的空間想象能力和推斷能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時為增函數(shù),由此可得出答案;(2)由(1)知,,即,結合“1”的代換,利用基本不等式即可證明結論.【詳解】解:(1)法一:(當且僅當時取等號),又(當且僅當時取等號),所以(當且僅當時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數(shù),且時為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應用,屬于中檔題.18、(1)1.7;(2),見解析;(2)2.【解析】
(1)平均數(shù)的估計值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項分布列的期望公式計算;(3)利用所給公式計算出回歸直線即可解決.【詳解】(1)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值的平均數(shù)的估計值為,所以方差的估計值為;(2)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值高于3萬元的頻率為,則,所以的分布列為,數(shù)學期望;(3)將2018年11月至2019年3月的月份數(shù)依次編號為1,2,3,4,5,記,,,,,,由散點圖可知,5組樣本數(shù)據(jù)呈線性相關關系,因為,,,,則,,所以回歸直線方程為,當時,,預計該品牌汽車在年月份的銷售量約為2萬輛.【點睛】本題考查平均數(shù)、方差的估計值、二項分布列及其期望、線性回歸直線方程及其應用,是一個概率與統(tǒng)計的綜合題,本題是一道中檔題.19、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數(shù)研究的單調(diào)性、極值,從而得到參數(shù)的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設,即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個極值點,等價于在有兩個不等實根,由可得,,令,則,令,可得,當時,,所以在上單調(diào)遞減,且當時,單調(diào)遞增;當時,單調(diào)遞減;所以是的極大值也是最大值,又當,當大于0趨向與0,要使在有兩個根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設,即證:要證,只需證:令,則在上為增函數(shù),即成立;要證,只需證明:令,則在上為減函數(shù),,即成立成立,所以成立.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性、極值,利用導數(shù)證明不等式,屬于難題;20、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數(shù).①當時,,故在上為增函數(shù),所以恒成立,故符合題意;②當時,由于,,根據(jù)零點存在定理,必存在,使得,由于在上為增函數(shù),故當時,,故在上為減函數(shù),所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復雜,本題屬于難題.21、(1);(2)當BP為cm時,α+β取得最小值.【解析】
(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,根據(jù)得到,解得答案.(2)設BP=t,則,故,設,求導得到函數(shù)單調(diào)性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,則,化簡得,解之得,或(舍),(2)設BP=t,則,,設,,令f'(t)=0,因為,得,當時,f'(t)<0,f(t)是減函數(shù);當時,f'(t)>0,f(t)是增函數(shù),所以,當時,f(t)取得最小值,即tan(α+β)取得最小值,因為恒成立,所以f(t)<0,所以tan(α+β)<0,,因為y=tanx在上是增函數(shù),所以當時,α+β取得最小值.【點睛】本題考查了三角恒等變換,利用導數(shù)求最值,意在考查學生的計算能力和應用能力.22、(1);(2)見解析;(3)見解析【解析】
(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導數(shù),討論a>1和a≤1,判斷導數(shù)的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導數(shù)和二階導數(shù),判斷F'(x)的單調(diào)性,討論a≤﹣1,a>﹣1,F(xiàn)(x)的單調(diào)性和零點個數(shù);(3)由(1)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當a=﹣1時,對x<0恒成立,令,結合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園游戲評價策略分析-以戶外混齡自主游戲為例
- 提升辦學水平的高標準創(chuàng)新方案
- 保溫棉廠家采購合同范例
- 2025年度金融風險管理培訓及認證服務協(xié)議
- 東莞員工公寓租賃合同范例
- 前臺接待續(xù)簽合同范例
- 兩人合伙買裝載機合同范例
- 出租商鋪協(xié)議合同范例
- 勞務公司招工合同范本
- 2025年度海運貨物跟蹤與運輸合同示范
- 2025版茅臺酒出口業(yè)務代理及銷售合同模板4篇
- 新版《醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范》(2024)培訓試題及答案
- 2025年人教版數(shù)學五年級下冊教學計劃(含進度表)
- 北師大版七年級上冊數(shù)學期末考試試題及答案
- 初中信息技術課堂中的項目式學習實踐研究結題報告
- 2025年初級社會工作者綜合能力全國考試題庫(含答案)
- 復工復產(chǎn)安全培訓考試題
- 上下樓梯安全我知道安全教育課件
- 手術風險及醫(yī)療意外險告知流程
- 《醫(yī)院重點??平ㄔO專項資金管理辦法》
評論
0/150
提交評論