北京市東城區(qū)2025屆高三下學期聯(lián)考數(shù)學試題含解析_第1頁
北京市東城區(qū)2025屆高三下學期聯(lián)考數(shù)學試題含解析_第2頁
北京市東城區(qū)2025屆高三下學期聯(lián)考數(shù)學試題含解析_第3頁
北京市東城區(qū)2025屆高三下學期聯(lián)考數(shù)學試題含解析_第4頁
北京市東城區(qū)2025屆高三下學期聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市東城區(qū)2025屆高三下學期聯(lián)考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設i為數(shù)單位,為z的共軛復數(shù),若,則()A. B. C. D.2.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.3.函數(shù)的圖象大致為()A. B.C. D.4.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.45.已知函數(shù),若關于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.6.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.7.已知等差數(shù)列的公差不為零,且,,構成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.138.已知定義在上的偶函數(shù),當時,,設,則()A. B. C. D.9.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.10.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.40011.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.12.如圖,在中,,且,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且滿足,則______14.已知,則_____.15.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.16.已知關于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數(shù),當時,試判斷的零點個數(shù).18.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關,合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關,質(zhì)量把關程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關,再由另外2位行家進行第二次質(zhì)量把關,若第二次質(zhì)量把關這2位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關這2位行家中有1位或2位認為質(zhì)量不過關,則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關,則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關中一件手工藝品被1位行家認為質(zhì)量不過關的概率為,且各手工藝品質(zhì)量是否過關相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.19.(12分)已知,且滿足,證明:.20.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,為數(shù)列的前項和,記,證明:.21.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.22.(10分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由復數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵.2、C【解析】

根據(jù)在關于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質(zhì)是解題基礎.隨機變量服從正態(tài)分布,則.3、A【解析】

用偶函數(shù)的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數(shù)為偶函數(shù),圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.4、C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎題.5、C【解析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構造法:構造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點個數(shù)問題求解,利用導數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點值符號,進而判斷函數(shù)在該區(qū)間上零點的個數(shù).6、D【解析】由題意得,函數(shù)點定義域為且,所以定義域關于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關于原點對稱,故選D.7、D【解析】

利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【詳解】由,,構成等差數(shù)列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎題.8、B【解析】

根據(jù)偶函數(shù)性質(zhì),可判斷關系;由時,,求得導函數(shù),并構造函數(shù),由進而判斷函數(shù)在時的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當時,,則,令則,當時,,則在時單調(diào)遞增,因為,所以,即,則在時單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數(shù)的性質(zhì)應用,由導函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應用,根據(jù)單調(diào)性比較大小,屬于中檔題.9、C【解析】

確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結合函數(shù)的單調(diào)性可得,即,設,,故單調(diào)遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關鍵.10、B【解析】

設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.【點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎題.11、B【解析】

由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.12、C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對題目所給等式進行賦值,由此求得的表達式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項為1,公比為的等比數(shù)列,可得.【點睛】本小題主要考查已知求,考查等比數(shù)列前項和公式,屬于中檔題.14、【解析】

對原方程兩邊求導,然后令求得表達式的值.【詳解】對等式兩邊求導,得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.15、8【解析】

根據(jù)偽代碼逆向運算求得結果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結果:【點睛】本題考查算法中的語言,屬于基礎題.16、【解析】

先換元,令,將原方程轉(zhuǎn)化為,利用參變分離法轉(zhuǎn)化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出.【詳解】因為關于的方程在區(qū)間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【點睛】本題主要考查學生運用轉(zhuǎn)化與化歸思想的能力,方程有解問題轉(zhuǎn)化成兩函數(shù)的圖像有交點問題,是常見的轉(zhuǎn)化方式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)1.【解析】

(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.18、(1)(2)①2②期望值為X900600300100P【解析】

(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為X900600300100P則期望為.19、證明見解析【解析】

將化簡可得,由柯西不等式可得證明.【詳解】解:因為,,所以,又,所以,當且僅當時取等號.【點睛】本題主要考查柯西不等式的應用,相對不難,注意已知條件的化簡及柯西不等式的靈活運用.20、(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數(shù)列是各項均為正數(shù)的等比數(shù)列,,可設公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數(shù)列的綜合應用,以及用裂項相消法求和并證明不等式,考查學生的運算求解能力和推理證明能力.21、(1)(2)【解析】

(1)先分別表示出,然后根據(jù)求解出的值,則的標準方程可求;(2)設出直線的方程并聯(lián)立拋物線方程得到韋達定理形式,然后根據(jù)距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標.【詳解】(1)由題意可得,焦點,,則,,∴解得.拋物線的標準方程為(2)設,設點,,顯然直線的斜率不為0.設直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時,點的坐標為【點睛】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應的定值問題,聯(lián)立直線方程借助韋達定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設法有時能很大程度上起到簡化運算的作用。22、(1)當時,公路的長度最短為千米;(2)(千米).【解析】

(1)設切點的坐標為,利用導數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構造函數(shù),利用導數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論