




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)湖南工業(yè)大學(xué)科技學(xué)院《標(biāo)志設(shè)計(jì)》
2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測(cè)出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車輛檢測(cè),以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測(cè)和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNNC.采用簡(jiǎn)單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進(jìn)行匹配D.對(duì)圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類2、計(jì)算機(jī)視覺(jué)在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見(jiàn)解。假設(shè)要分析一場(chǎng)足球比賽中球員的跑動(dòng)軌跡和動(dòng)作。以下關(guān)于計(jì)算機(jī)視覺(jué)在體育賽事中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)對(duì)視頻的分析,自動(dòng)跟蹤球員的位置和運(yùn)動(dòng)軌跡B.能夠?qū)η騿T的動(dòng)作進(jìn)行分類,如傳球、射門和防守C.計(jì)算機(jī)視覺(jué)在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無(wú)需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)3、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行視頻監(jiān)控中的異常行為檢測(cè),例如打架、盜竊等,以下哪種方法可能有助于準(zhǔn)確識(shí)別異常行為?()A.建立正常行為模型B.運(yùn)動(dòng)軌跡分析C.人群密度估計(jì)D.以上都是4、計(jì)算機(jī)視覺(jué)中的行人重識(shí)別是指在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人。假設(shè)要在一個(gè)大型商場(chǎng)的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識(shí)別,以下關(guān)于行人重識(shí)別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對(duì)行人的姿態(tài)和光照變化不敏感,識(shí)別準(zhǔn)確率高B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法能夠?qū)W習(xí)到行人的判別性特征,但容易受到背景干擾C.行人重識(shí)別系統(tǒng)只需要關(guān)注行人的外觀特征,不需要考慮行人的行為特征D.行人重識(shí)別在不同場(chǎng)景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響5、計(jì)算機(jī)視覺(jué)中的目標(biāo)重識(shí)別任務(wù)旨在在不同的攝像頭視角中識(shí)別出同一目標(biāo)。假設(shè)要在一個(gè)大型商場(chǎng)的多個(gè)攝像頭中尋找一個(gè)特定的人物。以下關(guān)于目標(biāo)重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取目標(biāo)的特征,如顏色、形狀和紋理,來(lái)進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識(shí)別的準(zhǔn)確率C.目標(biāo)重識(shí)別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過(guò)建立目標(biāo)的特征庫(kù),快速在多個(gè)攝像頭中進(jìn)行匹配和搜索6、計(jì)算機(jī)視覺(jué)中的深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的遠(yuǎn)近。假設(shè)要為機(jī)器人導(dǎo)航提供深度信息,以下關(guān)于深度估計(jì)方法的精度要求,哪一項(xiàng)是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級(jí)別的深度信息,確保機(jī)器人安全導(dǎo)航C.深度估計(jì)的精度對(duì)機(jī)器人導(dǎo)航影響不大,可以忽略D.精度要求取決于機(jī)器人的運(yùn)動(dòng)速度,速度越快要求精度越低7、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過(guò)攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺(jué)在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺(jué)系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力8、在計(jì)算機(jī)視覺(jué)中,以下哪種方法常用于圖像的目標(biāo)檢測(cè)中的遮擋處理?()A.上下文信息B.跟蹤歷史C.多視角融合D.以上都是9、計(jì)算機(jī)視覺(jué)中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個(gè)在復(fù)雜場(chǎng)景中運(yùn)動(dòng)的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測(cè)目標(biāo)的運(yùn)動(dòng)軌跡,但對(duì)目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計(jì)算復(fù)雜度低,適用于實(shí)時(shí)跟蹤要求高的場(chǎng)景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時(shí)容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測(cè)到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性10、計(jì)算機(jī)視覺(jué)中的虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)應(yīng)用需要實(shí)時(shí)生成逼真的視覺(jué)效果。假設(shè)要在一個(gè)VR游戲中為玩家提供沉浸式的視覺(jué)體驗(yàn),或者在AR應(yīng)用中準(zhǔn)確地將虛擬物體與現(xiàn)實(shí)場(chǎng)景融合。以下哪種計(jì)算機(jī)視覺(jué)技術(shù)在實(shí)現(xiàn)這些效果時(shí)至關(guān)重要?()A.實(shí)時(shí)渲染技術(shù)B.空間定位與追蹤技術(shù)C.三維重建與建模技術(shù)D.以上技術(shù)綜合應(yīng)用11、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含多種物體的圖像中準(zhǔn)確檢測(cè)出汽車的位置和類別。以下關(guān)于目標(biāo)檢測(cè)算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復(fù)雜場(chǎng)景下檢測(cè)效果優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的FasterR-CNN算法通過(guò)生成候選區(qū)域和分類回歸,能夠?qū)崿F(xiàn)高精度的目標(biāo)檢測(cè)C.目標(biāo)檢測(cè)算法只關(guān)注物體的外觀特征,不考慮物體之間的空間關(guān)系D.所有的目標(biāo)檢測(cè)算法對(duì)于小目標(biāo)的檢測(cè)都具有同樣出色的性能12、視頻理解是計(jì)算機(jī)視覺(jué)中的一個(gè)具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準(zhǔn)確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時(shí)間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時(shí)具有優(yōu)勢(shì)C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場(chǎng)景下的視頻內(nèi)容,不存在任何挑戰(zhàn)13、計(jì)算機(jī)視覺(jué)中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對(duì)一個(gè)古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)立體視覺(jué)的方法,從不同角度拍攝的圖像中計(jì)算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點(diǎn)云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實(shí)物體的形狀完全一致14、計(jì)算機(jī)視覺(jué)中的工業(yè)檢測(cè)任務(wù)需要檢測(cè)產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對(duì)一批電子產(chǎn)品的外觀進(jìn)行檢測(cè),要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測(cè)方法在處理這種高精度要求的任務(wù)時(shí)最為適用?()A.機(jī)器視覺(jué)檢測(cè)B.人工目檢C.抽樣檢測(cè)D.基于統(tǒng)計(jì)的檢測(cè)15、在計(jì)算機(jī)視覺(jué)的圖像特征提取中,假設(shè)要提取對(duì)光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計(jì)算復(fù)雜度高,實(shí)時(shí)性差B.HOG特征對(duì)光照變化適應(yīng)性強(qiáng),但對(duì)旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達(dá)能力有限D(zhuǎn).沒(méi)有一種特征提取方法能夠同時(shí)滿足對(duì)光照、旋轉(zhuǎn)和縮放的不變性要求二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在交通擁堵預(yù)測(cè)中的應(yīng)用。2、(本題5分)描述計(jì)算機(jī)視覺(jué)在影視制作中的應(yīng)用。3、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的人群密度估計(jì)任務(wù)。4、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在航空航天領(lǐng)域的應(yīng)用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用圖像識(shí)別算法,對(duì)不同類型的鞋子品牌和款式進(jìn)行分類和識(shí)別。2、(本題5分)對(duì)健身操教學(xué)視頻中的動(dòng)作標(biāo)準(zhǔn)度進(jìn)行自動(dòng)評(píng)估和指導(dǎo)。3、(本題5分)對(duì)舞蹈比賽中的舞蹈技巧難度和藝術(shù)表現(xiàn)力進(jìn)行評(píng)估。4、(本題5分)使用目標(biāo)跟蹤算法,對(duì)足球訓(xùn)練中的球員動(dòng)作進(jìn)行分析和改進(jìn)建議。5、(本題5分)在安防領(lǐng)域,利用計(jì)算機(jī)視覺(jué)檢測(cè)異常行為和入侵事件。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)分析某校園文化節(jié)的海報(bào)和活動(dòng)現(xiàn)場(chǎng)布置設(shè)計(jì),研究如何通過(guò)視覺(jué)元素體現(xiàn)校園文化特色,營(yíng)造歡樂(lè)的節(jié)日氛圍。2、(本
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年四年級(jí)英語(yǔ)上冊(cè) Unit 2 What's your number Lesson 7教學(xué)實(shí)錄 人教精通版(三起)
- 2023一年級(jí)數(shù)學(xué)下冊(cè) 六 100以內(nèi)的加法和減法(二)練習(xí)十二第3課時(shí)教學(xué)實(shí)錄 蘇教版
- 2024年四年級(jí)英語(yǔ)下冊(cè) Unit 6 Whose dress is this第4課時(shí)教學(xué)實(shí)錄 譯林牛津版
- 工作總結(jié)反思與成果展示報(bào)告書
- 通信行業(yè)網(wǎng)絡(luò)信息安全防護(hù)策略方案
- 2024年春八年級(jí)地理下冊(cè) 第六章 第三節(jié) 世界最大的黃土堆積區(qū) 黃土高原教學(xué)實(shí)錄 (新版)新人教版
- 11 衣食住行的變化(教學(xué)設(shè)計(jì))-蘇教版科學(xué)一年級(jí)上冊(cè)
- 4《四季》第二課時(shí) 教學(xué)設(shè)計(jì)-2024-2025學(xué)年統(tǒng)編版語(yǔ)文一年級(jí)上冊(cè)
- 2024-2025學(xué)年高中歷史 專題六 和平與發(fā)展-當(dāng)今世界的時(shí)代主題 一 爭(zhēng)取人類和平(3)教學(xué)教學(xué)實(shí)錄 人民版選修3
- 8《望廬山瀑布》教學(xué)設(shè)計(jì)-2024-2025學(xué)年二年級(jí)上冊(cè)語(yǔ)文統(tǒng)編版
- 濫用抗生素現(xiàn)狀及危害課件
- 2021年河南公務(wù)員行測(cè)考試真題及答案
- 廣告安裝施工及方案
- 應(yīng)急第一響應(yīng)人理論考試試卷(含答案)
- 2024年海南省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 《預(yù)防未成年人犯罪》課件(圖文)
- 上下級(jí)關(guān)系與領(lǐng)導(dǎo)力管理制度
- 九年級(jí)化學(xué)人教版跨學(xué)科實(shí)踐3水質(zhì)檢測(cè)及自制凈水器教學(xué)設(shè)計(jì)
- 堆垛機(jī)保護(hù)保養(yǎng)手冊(cè)
- 2024年衛(wèi)生資格(中初級(jí))-初級(jí)藥師考試近5年真題集錦(頻考類試題)帶答案
- 2024年職業(yè)病防治考試題庫(kù)附答案(版)
評(píng)論
0/150
提交評(píng)論