山東省蓬萊一中2025屆高三第四次模擬考試數(shù)學試卷含解析_第1頁
山東省蓬萊一中2025屆高三第四次模擬考試數(shù)學試卷含解析_第2頁
山東省蓬萊一中2025屆高三第四次模擬考試數(shù)學試卷含解析_第3頁
山東省蓬萊一中2025屆高三第四次模擬考試數(shù)學試卷含解析_第4頁
山東省蓬萊一中2025屆高三第四次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省蓬萊一中2025屆高三第四次模擬考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位2.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.3.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.4.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.5.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]6.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.7.已知集合,則()A. B.C. D.8.已知復數(shù)(為虛數(shù)單位,),則在復平面內(nèi)對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.10.已知全集,集合,則()A. B. C. D.11.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.12.設(shè),則,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.14.若實數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.15.若奇函數(shù)滿足,為R上的單調(diào)函數(shù),對任意實數(shù)都有,當時,,則________.16.在邊長為的菱形中,點在菱形所在的平面內(nèi).若,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.18.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.19.(12分)已知數(shù)列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數(shù)列的通項公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.20.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學期望.21.(12分)設(shè)數(shù)列,的各項都是正數(shù),為數(shù)列的前n項和,且對任意,都有,,,(e是自然對數(shù)的底數(shù)).(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

運用輔助角公式將兩個函數(shù)公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).2、D【解析】

先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關(guān)的問題,本題屬于基礎(chǔ)題.3、A【解析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.4、A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.5、B【解析】

先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.6、C【解析】

建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數(shù)方程的應用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.7、B【解析】

先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.8、B【解析】

分別比較復數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復平面內(nèi)對應的點所在的象限.【詳解】因為時,所以,,所以復數(shù)在復平面內(nèi)對應的點位于第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查學生的計算求解能力,屬于基礎(chǔ)題.9、C【解析】

對函數(shù)求導,對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點處的函數(shù)值進行判斷求解.【詳解】∵,.當時,,在上單調(diào)遞增,不合題意.當時,,在上單調(diào)遞減,也不合題意.當時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.10、D【解析】

根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.11、C【解析】

由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.12、A【解析】

根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

建系,設(shè),表示出點坐標,則,根據(jù)的范圍得出答案.【詳解】解:以為原點建立平面坐標系如圖所示:則,,,,設(shè),則,,,,,,,顯然當取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數(shù)量積運算,坐標運算,屬于中檔題.14、【解析】

畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.15、【解析】

根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數(shù)是以為周期的函數(shù),,又函數(shù)為奇函數(shù),所以.故答案為:【點睛】本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應用,屬于中檔題.16、【解析】

以菱形的中心為坐標原點建立平面直角坐標系,再設(shè),根據(jù)求出的坐標,進而求得即可.【詳解】解:連接設(shè)交于點以點為原點,分別以直線為軸,建立如圖所示的平面直角坐標系,則:設(shè)得,解得,,或,顯然得出的是定值,取則,.故答案為:.【點睛】本題主要考查了建立平面直角坐標系求解向量數(shù)量積的有關(guān)問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

分析:(1)先根據(jù)絕對值幾何意義將不等式化為三個不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據(jù)絕對值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當時,可得的解集為.(2)等價于.而,且當時等號成立.故等價于.由可得或,所以的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應用,這是命題的新動向.18、(1)詳見解析(2)【解析】

(1)如圖,作,交于,連接.因為,所以是的三等分點,可得.因為,,,所以,因為,所以,因為,所以,所以,因為,所以,所以,因為平面,平面,所以平面.又,平面,平面,所以平面.因為,、平面,所以平面平面,所以平面.(2)因為是等邊三角形,,所以.又因為,,所以,所以.又,平面,,所以平面.因為平面,所以平面平面.在平面內(nèi)作平面.以B點為坐標原點,分別以所在直線為軸,建立如圖所示的空間直角坐標系,則,,,所以,,,.設(shè)為平面的法向量,則,即,令,可得.設(shè)為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.19、(1),證明見解析;(2)【解析】

(1)首先利用賦值法求出的值,進一步利用定義求出數(shù)列的通項公式;(2)首先利用疊乘法求出數(shù)列的通項公式,進一步利用數(shù)列的單調(diào)性和基本不等式的應用求出參數(shù)的范圍.【詳解】(1)數(shù)列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數(shù)),所以數(shù)列是首項為1,公差為的等差數(shù)列.所以,整理得.(2)數(shù)列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,疊乘法的應用,函數(shù)的單調(diào)性在數(shù)列中的應用,基本不等式的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于中檔題型.20、(1)43,47;(2)分布列見解析,.【解析】

(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機變量分布列,根據(jù)分布列求解期望,關(guān)鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.21、(1),(2)【解析】

(1)當時,,與作差可得,即可得到數(shù)列是首項為1,公差為1的等差數(shù)列,即可求解;對取自然對數(shù),則,即是以1為首項,以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【詳解】解:(1)因為,,①當時,,解得;當時,有,②由①②得,,又,所以,即數(shù)列是首項為1,公差為1的等差數(shù)列,故,又因為,且,取自然對數(shù)得,所以,又因為,所以是以1為首項,以2為公比的等比數(shù)列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點睛】本題考查由與的關(guān)系求通項公式,考查錯位相減法求數(shù)列的和.22、(1)證明見解析(2)【解析】

(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標系,求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論