湖南省道縣補習學校2025屆高三壓軸卷數(shù)學試卷含解析_第1頁
湖南省道縣補習學校2025屆高三壓軸卷數(shù)學試卷含解析_第2頁
湖南省道縣補習學校2025屆高三壓軸卷數(shù)學試卷含解析_第3頁
湖南省道縣補習學校2025屆高三壓軸卷數(shù)學試卷含解析_第4頁
湖南省道縣補習學校2025屆高三壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省道縣補習學校2025屆高三壓軸卷數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則2.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+13.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.4.設(shè)等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.125.設(shè),分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.6.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.157.已知中,,則()A.1 B. C. D.8.一個空間幾何體的正視圖是長為4,寬為的長方形,側(cè)視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.已知,,,,則()A. B. C. D.10.秦九韶是我國南寧時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.11.己知,,,則()A. B. C. D.12.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則滿足的的取值范圍為_______.14.在長方體中,,,,為的中點,則點到平面的距離是______.15.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標準差為_______.16.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.19.(12分)已知函數(shù),.(1)當時,討論函數(shù)的單調(diào)性;(2)若,當時,函數(shù),求函數(shù)的最小值.20.(12分)誠信是立身之本,道德之基,我校學生會創(chuàng)設(shè)了“誠信水站”,既便于學生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調(diào)研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.21.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程與曲線的直角坐標方程;(2)設(shè)為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.2、B【解析】

以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.3、B【解析】

計算出的值,推導出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.4、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.5、C【解析】

根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.6、B【解析】,∴,選B.7、C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.8、B【解析】

由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.9、D【解析】

令,求,利用導數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調(diào)遞增:∴,當,設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.10、B【解析】

列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎(chǔ)題.11、B【解析】

先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.12、D【解析】

設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調(diào)性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點睛】本題考查分段函數(shù)的奇偶性與單調(diào)性的判定以及應(yīng)用,注意分析f(x)的奇偶性與單調(diào)性.14、【解析】

利用等體積法求解點到平面的距離【詳解】由題在長方體中,,,所以,所以,設(shè)點到平面的距離為,解得故答案為:【點睛】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點.15、【解析】

先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標準差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標準差為1.故答案為:1.【點睛】本題考查一組數(shù)據(jù)據(jù)的標準差的求法,考查平均數(shù)、方差、標準差的定義等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.16、0.08【解析】

先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)取的中點,連.可證得,,于是可得平面,進而可得結(jié)論成立.(2)運用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點,連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點,連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設(shè)平面的一個法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點睛】利用向量法求解直線和平面所成角時,關(guān)鍵點是恰當建立空間直角坐標系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關(guān)系.18、(1);(2)見解析.【解析】

(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設(shè)點、,設(shè)直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達定理,根據(jù)已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關(guān)系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設(shè),設(shè)點,聯(lián)立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中直線過定點的問題,考查計算能力,屬于中等題.19、(1)見解析(2)的最小值為【解析】

(1)由題可得函數(shù)的定義域為,,當時,,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當時,令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當時,恒成立,所以函數(shù)在上單調(diào)遞增.綜上,當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當時,函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增.(2)方法一:當時,,,設(shè),,則,所以函數(shù)在上單調(diào)遞減,所以,當且僅當時取等號.當時,設(shè),則,所以,設(shè),,則,所以函數(shù)在上單調(diào)遞減,且,,所以存在,使得,所以當時,;當時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,因為,,所以,所以,當且僅當時取等號.所以當時,函數(shù)取得最小值,且,故函數(shù)的最小值為.方法二:當時,,,則,令,,則,所以函數(shù)在上單調(diào)遞增,又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因為,所以當時,恒成立,所以當時,恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為.20、(Ⅰ);(Ⅱ);(Ⅲ)兩次活動效果均好,理由詳見解析.【解析】

(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計算公式求解即可;(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠信度”的平均數(shù).(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計算公式可得,.(Ⅲ)兩次活動效果均

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論