版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE專題十二多面體與球本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分.滿分80分,考試時(shí)間50分鐘.第Ⅰ卷(選擇題,共60分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.(2024·平頂山質(zhì)量檢測(cè))已知圓臺(tái)的上、下底面中心分別為O1,O2,過直線O1O2的截面是上、下底邊邊長(zhǎng)分別為2和4,且高為eq\r(3)的等腰梯形,則該圓臺(tái)的側(cè)面積為()A.3πB.3eq\r(3)πC.6πD.6eq\r(3)π答案C解析由題意,圓臺(tái)的上、下底面半徑分別為1和2,且截面等腰梯形的腰是該圓臺(tái)的母線,則母線長(zhǎng)l=eq\r(r1-r22+h2)=eq\r(12+3)=2,則該圓臺(tái)的側(cè)面積S側(cè)=π(r1+r2)l=6π.故選C.2.(2024·廣東韶關(guān)調(diào)研)如圖,圓柱的底面半徑為1,高為2,用一條鐵絲從上底面的A點(diǎn)沿側(cè)面纏繞一圈到達(dá)下底面的B點(diǎn),所用鐵絲的最短長(zhǎng)度是()A.2 B.2eq\r(π2+1)C.2π D.2π+1答案B解析由題意可知,將圓柱沿母線AB綻開,所用鐵絲的最短長(zhǎng)度為eq\r(22+2π2)=2eq\r(1+π2).故選B.3.(2024·平頂山質(zhì)量檢測(cè))一個(gè)各面均為直角三角形的四面體容器,有三條棱長(zhǎng)為1,要能夠完全裝下一個(gè)半徑為r的球體,則球半徑r的最大值為()A.eq\f(\r(2),2) B.eq\f(1,2)C.eq\f(\r(2)-1,2) D.eq\f(2-\r(2),2)答案C解析滿意條件的四面體容器有兩種狀況.如圖,在圖1四面體ABCD中,AD⊥平面BCD,BD⊥BC時(shí)滿意各面均為直角三角形,此時(shí)只能是AD=BD=BC=1,則AB=CD=eq\r(2),AC=eq\r(3).要滿意題意,則當(dāng)球與四面體各面均相切時(shí)半徑最大,此時(shí)設(shè)球心為O,則原四面體可看成以O(shè)為頂點(diǎn),其余各面為底面的4個(gè)四面體組合而成,且這4個(gè)四面體的高均為內(nèi)切球半徑,由等體積法有eq\f(1,6)=eq\f(1,3)req\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)+\f(1,2)+\f(\r(2),2)+\f(\r(2),2))),解得r=eq\f(\r(2)-1,2),即滿意題意的球的最大半徑為eq\f(\r(2)-1,2).在圖2中四面體A1B1C1D1中,A1D1⊥平面B1C1D1,D1C1⊥B1C1時(shí)滿意各面均為直角三角形,此時(shí)A1D1=D1C1=B1C1=1,同理解出滿意題意的球的最大半徑為eq\f(\r(2)-1,2).故選C.4.(2024·沈陽(yáng)質(zhì)量監(jiān)測(cè))如圖,四棱錐P-ABCD的底面為矩形,矩形的四個(gè)頂點(diǎn)A,B,C,D在球O的同一個(gè)大圓上,且球的表面積為16π,點(diǎn)P在球面上,則四棱錐P-ABCD體積的最大值為()A.8B.eq\f(8,3)C.16D.eq\f(16,3)答案D解析設(shè)球O的半徑為R,因?yàn)榍騉的表面積是16π,所以4πR2=16π,解得R=2,設(shè)矩形ABCD的長(zhǎng)、寬分別為x,y,則x2+y2=(2R)2,又x2+y2≥2xy,所以(2R)2≥2xy,當(dāng)且僅當(dāng)x=y(tǒng)時(shí)上式取等號(hào),即矩形ABCD為正方形時(shí),底面面積最大,此時(shí)S矩形ABCD=2R2=8.又點(diǎn)P在球面上,設(shè)點(diǎn)P究竟面ABCD的距離為h,當(dāng)OP⊥底面ABCD時(shí),有hmax=2,則四棱錐P-ABCD體積的最大值為eq\f(16,3).故選D.5.(2024·江西九校聯(lián)考)在正方體ABCD-A1B1C1D1中邊長(zhǎng)為2,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),若三棱錐P-ABC的外接球表面積恰為eq\f(41π,4),則此時(shí)點(diǎn)P構(gòu)成的圖形面積為()A.πB.eq\f(25π,16)C.eq\f(41π,16)D.2π答案A解析依據(jù)題意,以A點(diǎn)為坐標(biāo)原點(diǎn),AB為x軸,AD為y軸,AA1為z軸建立空間直角坐標(biāo)系,設(shè)球心坐標(biāo)為Q(1,1,z),P(x,y,2),依據(jù)QA2=R2=eq\f(41,16)?z=eq\f(3,4).此時(shí)球心坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(1,1,\f(3,4))),依據(jù)QP=R2得到(x-1)2+(y-1)2=1,即此時(shí)P點(diǎn)在一個(gè)半徑為1的圓上動(dòng).此圓的面積為π.故選A.6.(2024·開封一模)有四根長(zhǎng)都為2的直鐵條,若再選兩根長(zhǎng)都為a的直鐵條,使這六根鐵條端點(diǎn)處相連能夠焊接成一個(gè)對(duì)棱相等的三棱錐形的鐵架,則此三棱錐體積的取值范圍是()A.eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(8\r(3),27))) B.eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(16\r(3),27)))C.eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(\r(3),3))) D.eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(2\r(3),3)))答案B解析構(gòu)成三棱錐的兩條棱長(zhǎng)為a,其他各棱長(zhǎng)為2,如圖所示,AD=BC=a,此時(shí)0<a<2eq\r(2).取BC中點(diǎn)為E,連接AE,DE,易得BC⊥平面ADE,∴三棱錐的體積V=eq\f(1,3)×S△ADE×BC=eq\f(1,3)×eq\f(1,2)×eq\r(4-\f(a2,2))×a×a=eq\f(2,3)eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(4-\f(a2,2)))×\f(a2,4)×\f(a2,4))≤eq\f(2,3)eq\r(\a\vs4\al(\f(4-\f(a2,2)+\f(a2,4)+\f(a2,4),3))3)=eq\f(16\r(3),27),當(dāng)且僅當(dāng)4-eq\f(a2,2)=eq\f(a2,4)即a=eq\f(4\r(3),3)∈(0,2eq\r(2))時(shí),等號(hào)成立,∴此三棱錐體積的取值范圍是eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(16\r(3),27))).故選B.7.(2024·柳州市模擬)已知A,B,C三點(diǎn)都在表面積為100π的球O的表面上,若AB=4eq\r(3),∠ACB=60°.則球心O到平面ABC的距離等于()A.2B.3C.4D.5答案B解析結(jié)合題意,繪制圖形如圖,設(shè)△ABC的外接圓的圓心為O′,則依據(jù)正弦定理可知BO′=eq\f(AB,2sin∠ACB)=eq\f(4\r(3),2×\f(\r(3),2))=4,結(jié)合球表面積計(jì)算公式,可知4πR2=100π,R=5,結(jié)合球的性質(zhì)可知,△OBO′構(gòu)成直角三角形,結(jié)合勾股定理可知OO′=eq\r(R2-BO′2)=eq\r(52-42)=3.故選B.8.(2024·福建聯(lián)考)已知正三棱錐P-ABC中,E,F(xiàn)分別是AC,PC的中點(diǎn),若EF⊥BF,AB=2,則三棱錐P-ABC的外接球的表面積為()A.4πB.6πC.8πD.12π答案B解析因?yàn)镋,F(xiàn)分別是AC,PC的中點(diǎn),則EF∥PA,因?yàn)樗拿骟wP-ABC是正三棱錐,所以PA⊥BC(對(duì)棱垂直),所以EF⊥BC,又EF⊥BF,而BF∩BC=B,所以EF⊥平面PBC,所以PA⊥平面PBC,所以∠APB=∠APC=∠BPC=90°,以PA,PB,PC為從同一點(diǎn)P動(dòng)身的正方體的三條棱,將此三棱錐補(bǔ)成正方體,如圖所示,則它們有相同的外接球,正方體的體對(duì)角線就是外接球的直徑,又AB=2,所以PA=eq\r(2),所以2R=eq\r(3)PA=eq\r(6),故外接球的半徑為R=eq\f(\r(6),2),所求表面積S=4πR2=6π.故選B.9.(2024·廣東模擬)三棱錐P-ABC中,PA⊥平面ABC,∠ABC=30°,△APC的面積為2,則三棱錐P-ABC的外接球體積的最小值為()A.4πB.eq\f(4π,3)C.64πD.eq\f(32π,3)答案D解析如圖所示,設(shè)AC=x,由△APC的面積為2,得PA=eq\f(4,x),因?yàn)椤螦BC=30°,△ABC外接圓的半徑r=x,因?yàn)镻A⊥平面ABC,且PA=eq\f(4,x),所以O(shè)到平面ABC的距離為d=eq\f(1,2)·PA=eq\f(2,x),設(shè)球O的半徑為R,則R=eq\r(r2+d2)=eq\r(x2+\f(4,x2))≥eq\r(2×2)=2,當(dāng)且僅當(dāng)x=eq\r(2)時(shí)等號(hào)成立,所以三棱錐P-ABC的外接球的體積的最小值為eq\f(4π,3)×23=eq\f(32π,3).故選D.10.(2024·邵陽(yáng)聯(lián)考)已知三棱錐P-ABC底面的3個(gè)頂點(diǎn)A,B,C在球O的同一個(gè)大圓上,且△ABC為正三角形,P為該球面上的點(diǎn),若三棱錐P-ABC體積的最大值為2eq\r(3),則球O的表面積為()A.12πB.16πC.32πD.64π答案B解析三棱錐P-ABC的四個(gè)頂點(diǎn)都在同一球面上,其中底面的三個(gè)頂點(diǎn)在該球的一個(gè)大圓上.因?yàn)轭}目中涉及體積的最大值,故底面△ABC的中心就是球心O,PO是球的半徑,也是正三棱錐的高,設(shè)為R,底面△ABC的邊長(zhǎng)設(shè)為a,由正弦定理得到eq\f(a,sin60°)=2R?a=eq\r(3)R,△ABC的面積為eq\f(1,2)×eq\r(3)R×eq\r(3)R×sin60°=eq\f(3\r(3),4)R2,三棱錐的體積為V=eq\f(1,3)×R×eq\f(3\r(3),4)R2=2eq\r(3)?R=2,則此時(shí)球O的表面積是4πR2=4π×4=16π.故選B.11.(2024·吉林調(diào)研)已知圓錐的高為3,底面半徑長(zhǎng)為4,若一球的表面積與此圓錐側(cè)面積相等,則該球的半徑長(zhǎng)為()A.5B.eq\r(5)C.9D.3答案B解析∵圓錐的底面半徑r=4,高h(yuǎn)=3,∴圓錐的母線l=5,∴圓錐側(cè)面積S=πrl=20π,設(shè)球的半徑為R,則4πR2=20π,∴R=eq\r(5).故選B.12.(2024·丹東質(zhì)量測(cè)試)已知球O表面上的四點(diǎn)A,B,C,D滿意AC=BC=eq\r(2),∠ACB=90°,若四面體ABCD體積的最大值為eq\f(2,3),則球O的表面積為()A.eq\f(25π,4)B.eq\f(25π,9)C.eq\f(25π,16)D.eq\f(100π,9)答案A解析直角三角形ABC的面積為eq\f(1,2)×eq\r(2)×eq\r(2)=1,設(shè)四面體的高為DO′=h,則eq\f(1,3)×1×h=eq\f(2,3),h=2.由于三角形ABC為直角三角形,斜邊AB=eq\r(2+2)=2,eq\f(AB,2)=1,球心O在過AB中點(diǎn),且垂直于平面ABC的直線DO′上.設(shè)球的半徑為r,則(2-r)2+12=r2,解得r=eq\f(5,4),故球的表面積為4πr2=eq\f(25π,4).故選A.第Ⅱ卷(非選擇題,共20分)二、填空題(本大題共4小題,每小題5分,共20分)13.(2024·汕尾市高三教學(xué)質(zhì)量監(jiān)測(cè))在平面四邊形ABCD中,△ABC是邊長(zhǎng)為2的等邊三角形,△ADC是以AC為斜邊的等腰直角三角形,以AC為折痕把△ADC折起,當(dāng)DA⊥AB時(shí),四面體D-ABC的外接球的體積為________.答案eq\r(6)π解析在四面體中,由已知條件可知,AD=CD,AB=BC,BD=BD,則△BAD≌△BCD,所以∠BCD=∠BAD=90°,所以△BAD和△BCD是以BD為公共斜邊的兩個(gè)直角三角形,則BD是四面體D-ABC外接球的一條直徑,易知,AD=ACcos45°=eq\r(2),且BD=eq\r(AB2+AD2)=eq\r(6),設(shè)四面體D-ABC的外接球的半徑為R,則R=eq\f(BD,2)=eq\f(\r(6),2),因此,四面體D-ABC的外接球的體積為eq\f(4π,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),2)))3=eq\r(6)π.14.(2024·湖南湘潭一模)在三棱錐D-ABC中,CD⊥底面ABC,AC⊥BC,AB=BD=5,BC=4,則此三棱錐的外接球的表面積為________.答案34π解析由題可知AC=CD=eq\r(52-42)=3,故三棱錐D-ABC的外接球的半徑R=eq\f(\r(32+42+32),2)=eq\f(\r(34),2),則其表面積為4π×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(34),2)))2=34π.15.(2024·東莞統(tǒng)考)圓錐底面半徑為1,高為2eq\r(2),點(diǎn)P是底面圓周上一點(diǎn),則一動(dòng)點(diǎn)從點(diǎn)P動(dòng)身,繞圓錐側(cè)面一圈之后回到點(diǎn)P,則繞行的最短距離是________.答案3eq\r(3)解析把圓錐側(cè)面綻開成一個(gè)扇形,則對(duì)應(yīng)的弧長(zhǎng)是底面的周長(zhǎng),對(duì)應(yīng)的弦是最短距離,即CP的長(zhǎng)是動(dòng)點(diǎn)繞行的最短距離,過A作AD⊥PC于D,弧PC的長(zhǎng)是2π·1=2π,母線AC=eq\r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度健康體檢中心品牌獨(dú)家代理合同4篇
- 2025年度綠色城市水資源管理技術(shù)合同4篇
- 2025年度新型環(huán)保鋁合金門窗生產(chǎn)基地合作協(xié)議4篇
- 2025年度板材行業(yè)安全生產(chǎn)標(biāo)準(zhǔn)采購(gòu)合同4篇
- 2025年度環(huán)保型廠房建筑承包合同書4篇
- 2025年度道路客運(yùn)司機(jī)崗位勞動(dòng)合同范本3篇
- 2025年度智能養(yǎng)老服務(wù)體系建設(shè)項(xiàng)目合同4篇
- 2025年度煤炭產(chǎn)品質(zhì)保服務(wù)合同書4篇
- 二零二五年度房產(chǎn)買賣資金墊付協(xié)議4篇
- 2025年醫(yī)療服務(wù)合同范本
- 臺(tái)資企業(yè)A股上市相關(guān)資料
- 電 梯 工 程 預(yù) 算 書
- 羅盤超高清圖
- 參會(huì)嘉賓簽到表
- 機(jī)械車間員工績(jī)效考核表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評(píng)估流程圖
- 人力資源管理之績(jī)效考核 一、什么是績(jī)效 所謂績(jī)效簡(jiǎn)單的講就是對(duì)
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎(chǔ)研究
- 廢品管理流程圖
評(píng)論
0/150
提交評(píng)論