版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題09三角函數(shù)與三角恒等變換(講)真題體驗(yàn)感悟高考1.(2022·全國(guó)·高考真題)若SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由兩角和差的正余弦公式化簡(jiǎn),結(jié)合同角三角函數(shù)的商數(shù)關(guān)系即可得解.【詳解】[方法一]:直接法由已知得:SKIPIF1<0,即:SKIPIF1<0,即:SKIPIF1<0所以SKIPIF1<0故選:C[方法二]:特殊值排除法解法一:設(shè)β=0則sinα+cosα=0,取SKIPIF1<0,排除A,B;再取α=0則sinβ+cosβ=2sinβ,取βSKIPIF1<0,排除D;選C.[方法三]:三角恒等變換SKIPIF1<0所以SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:C.2.(2022·全國(guó)·高考真題)記函數(shù)SKIPIF1<0的最小正周期為T.若SKIPIF1<0,且SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】A【分析】由三角函數(shù)的圖象與性質(zhì)可求得參數(shù),進(jìn)而可得函數(shù)解析式,代入即可得解.【詳解】由函數(shù)的最小正周期T滿足SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,又因?yàn)楹瘮?shù)圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A3.(2021·浙江·高考真題)設(shè)函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的最小正周期;(2)求函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由題意結(jié)合三角恒等變換可得SKIPIF1<0,再由三角函數(shù)最小正周期公式即可得解;(2)由三角恒等變換可得SKIPIF1<0,再由三角函數(shù)的圖象與性質(zhì)即可得解.【詳解】(1)由輔助角公式得SKIPIF1<0,則SKIPIF1<0,所以該函數(shù)的最小正周期SKIPIF1<0;(2)由題意,SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),函數(shù)取最大值SKIPIF1<0.總結(jié)規(guī)律預(yù)測(cè)考向(一)規(guī)律與預(yù)測(cè)1.高考對(duì)此部分內(nèi)容的命題主要集中于三角函數(shù)的定義、圖象與性質(zhì),主要考查圖象的變換、函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性及最值,常與三角恒等變換交匯命題.2.三角恒等變換的求值、化簡(jiǎn)是命題的熱點(diǎn),利用三角恒等變換作為工具,研究三角函數(shù)的最值、范圍問(wèn)題.3.三角函數(shù)、三角恒等變換等,考查方式有兩種,即獨(dú)立考查與綜合考查,主要以選擇題、填空題的形式考查,難度為中等或偏下.(二)本專題考向展示考點(diǎn)突破典例分析考向一三角恒等變換【核心知識(shí)】1.同角關(guān)系:sin2α+cos2α=1,eq\f(sinα,cosα)=tanαeq\b\lc\(\rc\)(\a\vs4\al\co1(α≠\f(π,2)+kπ,k∈Z)).2.誘導(dǎo)公式:在eq\f(kπ,2)+α,k∈Z的誘導(dǎo)公式中“奇變偶不變,符號(hào)看象限”.3.兩角和與差的三角函數(shù)公式(1)兩角和與差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcos_β-sin_αsinβ;S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sin_αcos_β-cosαsinβ;T(α+β):tan(α+β)=eq\f(tanα+tanβ,1-tanαtanβ);T(α-β):tan(α-β)=eq\f(tanα-tanβ,1+tanαtanβ).(2)變形公式:tanα±tanβ=tan(α±β)(1?tanαtanβ);.(3)輔助角公式一般地,函數(shù)f(α)=asinα+bcosα(a,b為常數(shù))可以化為f(α)=eq\r(a2+b2)sin(α+φ)eq\b\lc\(\rc\)(\a\vs4\al\co1(其中tanφ=\f(b,a)))或f(α)=eq\r(a2+b2)cos(α-φ)eq\b\lc\(\rc\)(\a\vs4\al\co1(其中tanφ=\f(a,b))).4.二倍角公式(1)二倍角的正弦、余弦、正切公式:S2α:sin2α=2sin_αcos_α;C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α;T2α:tan2α=eq\f(2tanα,1-tan2α).(2)變形公式:cos2α=eq\f(1+cos2α,2),sin2α=eq\f(1-cos2α,2)1+sin2α=(sinα+cosα)2,1-sin2α=(sinα-cosα)2【典例分析】典例1.(2021·全國(guó)·高考真題(文))若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由二倍角公式可得SKIPIF1<0,再結(jié)合已知可求得SKIPIF1<0,利用同角三角函數(shù)的基本關(guān)系即可求解.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.典例2.(2022·浙江·高考真題)若SKIPIF1<0,則SKIPIF1<0__________,SKIPIF1<0_________.【答案】
SKIPIF1<0
SKIPIF1<0【分析】先通過(guò)誘導(dǎo)公式變形,得到SKIPIF1<0的同角等式關(guān)系,再利用輔助角公式化簡(jiǎn)成正弦型函數(shù)方程,可求出SKIPIF1<0,接下來(lái)再求SKIPIF1<0.【詳解】[方法一]:利用輔助角公式處理∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:直接用同角三角函數(shù)關(guān)系式解方程∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,將SKIPIF1<0代入得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.典例3.(2020·浙江·高考真題)已知SKIPIF1<0,則SKIPIF1<0________;SKIPIF1<0______.【答案】
SKIPIF1<0
SKIPIF1<0【分析】利用二倍角余弦公式以及弦化切得SKIPIF1<0,根據(jù)兩角差正切公式得SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0【規(guī)律方法】1.三角求值“三大類型”“給角求值”“給值求值”“給值求角”.2.三角恒等變換“四大策略”(1)常值代換:常用到“1”的代換,1=sin2θ+cos2θ=tan45°等.(2)項(xiàng)的拆分與角的配湊:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等.(3)降次與升次:正用二倍角公式升次,逆用二倍角公式降次.(4)弦、切互化.考向二三角函數(shù)的圖象與解析式【核心知識(shí)】【典例分析】典例4.(2022·全國(guó)·高考真題(文))將函數(shù)SKIPIF1<0的圖像向左平移SKIPIF1<0個(gè)單位長(zhǎng)度后得到曲線C,若C關(guān)于y軸對(duì)稱,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先由平移求出曲線SKIPIF1<0的解析式,再結(jié)合對(duì)稱性得SKIPIF1<0,即可求出SKIPIF1<0的最小值.【詳解】由題意知:曲線SKIPIF1<0為SKIPIF1<0,又SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,則SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0.故選:C.典例5.(2021·全國(guó)·高考真題(理))把函數(shù)SKIPIF1<0圖像上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的SKIPIF1<0倍,縱坐標(biāo)不變,再把所得曲線向右平移SKIPIF1<0個(gè)單位長(zhǎng)度,得到函數(shù)SKIPIF1<0的圖像,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】解法一:從函數(shù)SKIPIF1<0的圖象出發(fā),按照已知的變換順序,逐次變換,得到SKIPIF1<0,即得SKIPIF1<0,再利用換元思想求得SKIPIF1<0的解析表達(dá)式;解法二:從函數(shù)SKIPIF1<0出發(fā),逆向?qū)嵤└鞑阶儞Q,利用平移伸縮變換法則得到SKIPIF1<0的解析表達(dá)式.【詳解】解法一:函數(shù)SKIPIF1<0圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的SKIPIF1<0倍,縱坐標(biāo)不變,得到SKIPIF1<0的圖象,再把所得曲線向右平移SKIPIF1<0個(gè)單位長(zhǎng)度,應(yīng)當(dāng)?shù)玫絊KIPIF1<0的圖象,根據(jù)已知得到了函數(shù)SKIPIF1<0的圖象,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;解法二:由已知的函數(shù)SKIPIF1<0逆向變換,第一步:向左平移SKIPIF1<0個(gè)單位長(zhǎng)度,得到SKIPIF1<0的圖象,第二步:圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到SKIPIF1<0的圖象,即為SKIPIF1<0的圖象,所以SKIPIF1<0.故選:B.【規(guī)律方法】1.由的圖象求其函數(shù)式:在觀察圖象的基礎(chǔ)上可按以下規(guī)律來(lái)確定A,ω,φ.(1)A:一般可由圖象上的最大值、最小值來(lái)確定.(2)ω:因?yàn)門=eq\f(2π,ω),故往往通過(guò)求周期T來(lái)確定ω.可通過(guò)已知曲線與x軸的交點(diǎn)來(lái)確定T,即相鄰的最高點(diǎn)與最低點(diǎn)之間的距離為eq\f(T,2);相鄰的兩個(gè)最高點(diǎn)(或最低點(diǎn))之間的距離為T.(3)φ:從“五點(diǎn)法”中的第一個(gè)點(diǎn)(-eq\f(φ,ω),0)(也叫初始點(diǎn))作為突破口,要從圖象的升降情況找準(zhǔn)第一個(gè)點(diǎn)的位置.2.依據(jù)五點(diǎn)列表法原理,點(diǎn)的序號(hào)與式子的關(guān)系如下:“第一點(diǎn)”(即圖象上升時(shí)與x軸的交點(diǎn))為ωx+φ=0;“第二點(diǎn)”(即圖象曲線的“峰點(diǎn)”)為ωx+φ=eq\f(π,2);“第三點(diǎn)”(即圖象下降時(shí)與x軸的交點(diǎn))為ωx+φ=π;“第四點(diǎn)”(即圖象曲線的“谷點(diǎn)”)為ωx+φ=eq\f(3π,2);“第五點(diǎn)”(即圖象第二次上升時(shí)與x軸的交點(diǎn))為ωx+φ=2π.在用以上方法確定φ的值時(shí),還要注意題目中給出的φ的范圍,不在要求范圍內(nèi)的要通過(guò)周期性轉(zhuǎn)化到要求范圍內(nèi).(4)A,ω,φ三個(gè)量中初相φ的確定是一個(gè)難點(diǎn),除使用初始點(diǎn)(-eq\f(φ,ω),0)外,還可在五點(diǎn)中找兩個(gè)特殊點(diǎn)列方程組來(lái)求解φ.3.利用圖象變換求解析式:由的圖象向左或向右平移個(gè)單位,得到函數(shù),將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(),便得,將圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍(),便得.考向三三角函數(shù)的性質(zhì)【核心知識(shí)】函數(shù)的圖象與性質(zhì)(1)的遞增區(qū)間是,遞減區(qū)間是.(2)對(duì)于和來(lái)說(shuō),對(duì)稱中心與零點(diǎn)相聯(lián)系,對(duì)稱軸與最值點(diǎn)聯(lián)系.的圖象有無(wú)窮多條對(duì)稱軸,可由方程解出;它還有無(wú)窮多個(gè)對(duì)稱中心,它們是圖象與軸的交點(diǎn),可由,解得,即其對(duì)稱中心為.(3)若為偶函數(shù),則有;若為奇函數(shù)則有.(4)的最小正周期都是.【典例分析】典例6.(2022·全國(guó)·高考真題(理))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的圖象大致為(
)A. B.C. D.【答案】A【分析】由函數(shù)的奇偶性結(jié)合指數(shù)函數(shù)、三角函數(shù)的性質(zhì)逐項(xiàng)排除即可得解.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),排除BD;又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,排除C.故選:A.典例7.(2021·安徽高三其他模擬(文))已知函數(shù)SKIPIF1<0,且函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,則下列關(guān)于函數(shù)SKIPIF1<0的說(shuō)法,①SKIPIF1<0;②點(diǎn)SKIPIF1<0是SKIPIF1<0的一個(gè)對(duì)稱中心;③直線SKIPIF1<0是函數(shù)SKIPIF1<0的一條對(duì)稱軸;④函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0.其中正確的()A.①②④ B.①②③ C.②③④ D.①③④【答案】D【解析】由題得SKIPIF1<0,所以SKIPIF1<0,所以①正確;函數(shù)SKIPIF1<0沒(méi)有對(duì)稱中心,對(duì)稱軸方程為SKIPIF1<0,故②不正確,③正確;令SKIPIF1<0,得SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0,故④正確.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的最小正周期為SKIPIF1<0,所以SKIPIF1<0,所以①正確;函數(shù)SKIPIF1<0沒(méi)有對(duì)稱中心,且對(duì)稱軸方程為SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),對(duì)稱軸方程為SKIPIF1<0,故②不正確,③正確;令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0,故④正確.故選:D.典例8.(2022·河北南宮中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有3個(gè)最值點(diǎn)和4個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】數(shù)形結(jié)合,由第4個(gè)正零點(diǎn)小于等于1,第4個(gè)正最值點(diǎn)大于1可解.【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有SKIPIF1<0個(gè)最值點(diǎn)和4個(gè)零點(diǎn),由圖像得:SKIPIF1<0,解得:SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B典例9.(2022·北京·高考真題)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減 B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減 D.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增【答案】C【分析】化簡(jiǎn)得出SKIPIF1<0,利用余弦型函數(shù)的單調(diào)性逐項(xiàng)判斷可得出合適的選項(xiàng).【詳解】因?yàn)镾KIPIF1<0.對(duì)于A選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,A錯(cuò);對(duì)于B選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào),B錯(cuò);對(duì)于C選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,C對(duì);對(duì)于D選項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào),D錯(cuò).故選:C.典例10.【多選題】(2022·全國(guó)·高考真題)已知函數(shù)SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,則(
)A.SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減B.SKIPIF1<0在區(qū)間SKIPIF1<0有兩個(gè)極值點(diǎn)C.直線SKIPIF1<0是曲線SKIPIF1<0的對(duì)稱軸D.直線SKIPIF1<0是曲線SKIPIF1<0的切線【答案】AD【分析】根據(jù)三角函數(shù)的性質(zhì)逐個(gè)判斷各選項(xiàng),即可解出.【詳解】由題意得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0.對(duì)A,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由正弦函數(shù)SKIPIF1<0圖象知SKIPIF1<0在SKIPIF1<0上是單調(diào)遞減;對(duì)B,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由正弦函數(shù)SKIPIF1<0圖象知SKIPIF1<0只有1個(gè)極值點(diǎn),由SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0為函數(shù)的唯一極值點(diǎn);對(duì)C,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0不是對(duì)稱軸;對(duì)D,由SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,從而得:SKIPIF1<0或SKIPIF1<0,所以函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,切線方程為:SKIPIF1<0即SKIPIF1<0.故選:AD.【疑難點(diǎn)睛】已知三角函數(shù)的單調(diào)區(qū)間求參數(shù)取值范圍的三種方法(1)子集法:求出原函數(shù)的相應(yīng)單調(diào)區(qū)間,由已知區(qū)間是所求某區(qū)間的子集,列不等式(組)求解.(2)反子集法:由所給區(qū)間求出整體角的范圍,由該范圍是某相應(yīng)正弦、余弦函數(shù)的某個(gè)單調(diào)區(qū)間的子集,列不等式(組)求解.(3)周期性:由所給區(qū)間的兩個(gè)端點(diǎn)到其相應(yīng)對(duì)稱中心的距離不超過(guò)SKIPIF1<0個(gè)周期列不等式(組)求解.考向四三角函數(shù)中的范圍、最值問(wèn)題【核心知識(shí)】(1)求解三角函數(shù)的范圍或最值的關(guān)鍵在于根據(jù)題目條件和函數(shù)形式選擇適當(dāng)?shù)墓ぞ撸喝呛瘮?shù)的有界性,基本不等式,二次函數(shù)等.(2)求解和三角函數(shù)性質(zhì)有關(guān)的范圍、最值問(wèn)題,要結(jié)合三角函數(shù)的圖象.典例11.(2022·天津·高考真題)已知SKIPIF1<0,關(guān)于該函數(shù)有下列四個(gè)說(shuō)法:①SKIPIF1<0的最小正周期為SKIPIF1<0;②SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的取值范圍為SKIPIF1<0;④SKIPIF1<0的圖象可由SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度得到.以上四個(gè)說(shuō)法中,正確的個(gè)數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)三角函數(shù)的圖象與性質(zhì),以及變換法則即可判斷各說(shuō)法的真假.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0的最小正周期為SKIPIF1<0,①不正確;令SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,②正確;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,③不正確;由于SKIPIF1<0,所以SKIPIF1<0的圖象可由SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長(zhǎng)度得到,④不正確.故選:A.典例12.(2019·全國(guó)·高考真題(理))設(shè)函數(shù)SKIPIF1<0=sin(SKIPIF1<0)(SKIPIF1<0>0),已知SKIPIF1<0在SKIPIF1<0有且僅有5個(gè)零點(diǎn),下述四個(gè)結(jié)論:①SKIPIF1<0在(SKIPIF1<0)有且僅有3個(gè)極大值點(diǎn)②SKIPIF1<0在(SKIPIF1<0)有且僅有2個(gè)極小值點(diǎn)③SKIPIF1<0在(SKIPIF1<0)單調(diào)遞增④SKIPIF1<0的取值范圍是[SKIPIF1<0)其中所有正確結(jié)論的編號(hào)是A.①④ B.②③ C.①②③ D.①③④【答案】D【分析】本題為三角函數(shù)與零點(diǎn)結(jié)合問(wèn)題,難度大,通過(guò)整體換元得SKIPIF1<0,結(jié)合正弦函數(shù)的圖像分析得出答案.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∵f(x)在SKIPIF1<0有且僅有5個(gè)零點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,故④正確,由SKIPIF1<0,知SKIPIF1<0時(shí),令SKIPIF1<0時(shí)取得極大值,①正確;極小值點(diǎn)不確定,可能是2個(gè)也可能是3個(gè),②不正確;因此由選項(xiàng)可知只需判斷③是否正確即可得到答案,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若f(x)在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,故③正確.故選D.典例13.(2022·全國(guó)·高考真題(理))設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0的取值范圍得到SKIPIF1<0的取值范圍,再結(jié)合正弦函數(shù)的性質(zhì)得到不等式組,解得即可.【詳解】解:依題意可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,要使函數(shù)在區(qū)間SKIPIF1<0恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),又SKIPIF1<0,SKIPIF1<0的圖象如下所示:則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故選:C.典例14.(2022·全國(guó)·高考真題(理))記函數(shù)SKIPIF1<0的最小正周期為T,若SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的零點(diǎn),則SKIPIF1<0的最小值為____________.【答案】SKIPIF1<0【分析】首先表示出SKIPIF1<0,根據(jù)SKIPIF1<0求出SKIPIF1<0,再根據(jù)SKIPIF1<0為函數(shù)的零點(diǎn),即可求出SKIPIF1<0的取值,從而得解;【詳解】解:因?yàn)镾KIPIF1<0,(SKIPIF1<0,SKIPIF1<0)所以最小正周期SKIPIF1<0,因?yàn)镾KIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0的零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0;故答案為:SKIPIF1<0典例15.(2022·北京·海淀實(shí)驗(yàn)中學(xué)高三階段練習(xí))用下面兩個(gè)條件中的一個(gè)補(bǔ)全如下函數(shù)SKIPIF1<0________________.條件①:SKIPIF1<0;條件②:SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最大值和最小值.【答案】(1)選①SKIPIF1<0;選②SKIPIF1<0;(2)選①,最大值4,最小值2;選②,最大值SKIPIF1<0,最小值SKIPIF1<0.【分析】(1)利用函數(shù)解析式及特殊角三角函數(shù)值即得;(2)選①可得SKIPIF1<0,利用余弦函數(shù)及二次函數(shù)的性質(zhì)即得;選②可得SKIPIF1<0,然后利用三角函數(shù)的性質(zhì)即得.【詳解】(1)選①,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0;選②,SKIPIF1<0,所以SKIPIF1<0;(2)選①,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有最大值4,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有最小值2;選②,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0,所以當(dāng)SKIPIF1<0,即S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年天津一百中高考語(yǔ)文質(zhì)檢試卷(一)
- 2023年全斷面掘進(jìn)機(jī)項(xiàng)目融資計(jì)劃書
- 2023年三醋酸纖維素膜項(xiàng)目融資計(jì)劃書
- 《社會(huì)文化》課件
- 電力及電機(jī)拖動(dòng)習(xí)題庫(kù)+參考答案
- 養(yǎng)老院老人生活設(shè)施維修人員考核獎(jiǎng)懲制度
- 養(yǎng)老院老人護(hù)理評(píng)估制度
- 2024年大型企業(yè)第三方社保代繳與員工福利管理服務(wù)協(xié)議3篇
- 施工房屋漏水免責(zé)協(xié)議書(2篇)
- 2025年駕考駕考貨運(yùn)道路從業(yè)資格證
- 環(huán)境工程的課程設(shè)計(jì)---填料吸收塔
- 道路運(yùn)輸達(dá)標(biāo)車輛客車貨車核查記錄表
- 兒童詩(shī)兒童詩(shī)的欣賞和創(chuàng)作(課件)
- 人力資源管理工作思路(共3頁(yè))
- 五筆常用字根表3746
- 新生兒肺氣漏
- 氣管切開(一次性氣切導(dǎo)管)護(hù)理評(píng)分標(biāo)準(zhǔn)
- 保安工作日志表
- 姜太公釣魚的歷史故事
- 數(shù)控車床實(shí)訓(xùn)圖紙國(guó)際象棋圖紙全套
- 電子政務(wù)概論教案
評(píng)論
0/150
提交評(píng)論