![新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題08 極值點(diǎn)偏移問(wèn)題(練)(解析版)_第1頁(yè)](http://file4.renrendoc.com/view9/M02/0C/04/wKhkGWdSSk-AbRwlAAGls-o8AMs411.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題08 極值點(diǎn)偏移問(wèn)題(練)(解析版)_第2頁(yè)](http://file4.renrendoc.com/view9/M02/0C/04/wKhkGWdSSk-AbRwlAAGls-o8AMs4112.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題08 極值點(diǎn)偏移問(wèn)題(練)(解析版)_第3頁(yè)](http://file4.renrendoc.com/view9/M02/0C/04/wKhkGWdSSk-AbRwlAAGls-o8AMs4113.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題08 極值點(diǎn)偏移問(wèn)題(練)(解析版)_第4頁(yè)](http://file4.renrendoc.com/view9/M02/0C/04/wKhkGWdSSk-AbRwlAAGls-o8AMs4114.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題08 極值點(diǎn)偏移問(wèn)題(練)(解析版)_第5頁(yè)](http://file4.renrendoc.com/view9/M02/0C/04/wKhkGWdSSk-AbRwlAAGls-o8AMs4115.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題08極值點(diǎn)偏移問(wèn)題(練)【對(duì)點(diǎn)演練】一、單選題1.(2021·江西·鷹潭一中高三階段練習(xí)(文))關(guān)于函數(shù)SKIPIF1<0,下列說(shuō)法正確的是(
)A.SKIPIF1<0是SKIPIF1<0的極大值點(diǎn)B.函數(shù)SKIPIF1<0有2個(gè)零點(diǎn)C.存在正整數(shù)k,使得SKIPIF1<0恒成立D.對(duì)任意兩個(gè)正實(shí)數(shù)SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0【答案】D【分析】對(duì)A,求導(dǎo)得到單調(diào)區(qū)間即可判斷;對(duì)B,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得出單調(diào)區(qū)間即可進(jìn)一步得到結(jié)果;對(duì)C,分離參數(shù)SKIPIF1<0,通過(guò)SKIPIF1<0的單調(diào)性和函數(shù)變化趨勢(shì)即可判斷;對(duì)D,根據(jù)函數(shù)f(x)的單調(diào)性,將自變量比較大小轉(zhuǎn)化為函數(shù)值比較大小,用極值點(diǎn)偏移的方法得到結(jié)論.【詳解】對(duì)A,SKIPIF1<0,函數(shù)在SKIPIF1<0單減,在SKIPIF1<0單增,SKIPIF1<0是SKIPIF1<0的極小值點(diǎn),A錯(cuò)誤;對(duì)B,SKIPIF1<0,函數(shù)在SKIPIF1<0單減,至多一個(gè)零點(diǎn),B錯(cuò)誤;對(duì)C,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,函數(shù)在SKIPIF1<0單增,在SKIPIF1<0單減,所以SKIPIF1<0,∴SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0單減,無(wú)最小值,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,C錯(cuò)誤;對(duì)D,不妨設(shè)SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0單增,則SKIPIF1<0,即證:,記,所以,所以在單減,所以,即,所以,D正確.故選:D.【點(diǎn)睛】本題為函數(shù)的綜合題,不論分參也好還是極值點(diǎn)偏移也好,還是零點(diǎn)問(wèn)題、最值問(wèn)題,最終都要對(duì)函數(shù)的單調(diào)性進(jìn)行討論,進(jìn)而得到答案;需要注意的是,導(dǎo)數(shù)綜合題一定要結(jié)合函數(shù)的圖象輔助解決,平常注意對(duì)導(dǎo)數(shù)的題目進(jìn)行歸類,總結(jié)做法.2.(2021·浙江·鎮(zhèn)海中學(xué)高三開(kāi)學(xué)考試)已知函數(shù),對(duì)于正實(shí)數(shù)a,若關(guān)于t的方程恰有三個(gè)不同的正實(shí)數(shù)根,則a的取值范圍是(
)A. B. C. D.【答案】D【分析】研究的圖像可知,若,令,則,且,可以推出,或,通過(guò)對(duì)數(shù)不等式寫出關(guān)于的不等式,即可求出的范圍【詳解】因?yàn)?,,令得:;令得:,所以在區(qū)間單調(diào)遞增,在單調(diào)遞減,且時(shí),恒成立,的圖像如下:令,則,且①當(dāng)時(shí),,成立,所以是方程的一個(gè)實(shí)數(shù)根②當(dāng)時(shí),由得:,令則:,兩式相減得:,兩式相加得:所以:,由對(duì)數(shù)均值不等式得:所以:,且,所以,,即:所以故選:D【點(diǎn)睛】題目考察到了極值點(diǎn)偏移的思想,用對(duì)數(shù)均值不等式解決,完整的對(duì)數(shù)均值不等式為:,可用兩邊同除,令整體換元的思想來(lái)構(gòu)造函數(shù),證明不等式成立二、多選題3.(2021·河北·高三階段練習(xí))已知函數(shù),則下面結(jié)論成立的是(
)A.當(dāng)時(shí),函數(shù)有兩個(gè)實(shí)數(shù)根B.函數(shù)只有一個(gè)實(shí)數(shù)根,則C.若函數(shù)有兩個(gè)實(shí)數(shù)根,,則D.若函數(shù)有兩個(gè)實(shí)數(shù)根,,則【答案】AC【分析】令參變分離可得,令,利用導(dǎo)數(shù)說(shuō)明其單調(diào)性,即可得到函數(shù)的函數(shù)圖象,從而判斷A、B,若函數(shù)有兩個(gè)實(shí)數(shù)根,,則,即可得到,再令,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可判斷C、D;【詳解】解:根據(jù)題意,令則,令,則,所以當(dāng)時(shí),,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,畫出函數(shù)圖象如下:函數(shù)的最大值在處取得,最大值為,所以選項(xiàng)A正確,當(dāng)或時(shí)函數(shù)只有一個(gè)實(shí)數(shù)根,故選項(xiàng)B不正確,若函數(shù)有兩個(gè)實(shí)數(shù)根,,則,所以,令,,對(duì)函數(shù)求導(dǎo)可得,,令,則恒成立,所以函數(shù)單調(diào)遞增,又,所以,所以在時(shí)單調(diào)遞增,的函數(shù)圖象如下所示:可得,所以選項(xiàng)C正確,選項(xiàng)D不正確.故選:AC4.(2021·全國(guó)·高二專題練習(xí))若直線與曲線相交于不同兩點(diǎn),,曲線在A,點(diǎn)處切線交于點(diǎn),則(
)A. B.C. D.存在,使得【答案】ABC【分析】對(duì)于A:求出過(guò)原點(diǎn)的切線的斜率為,根據(jù)直線與曲線有兩個(gè)不同的交點(diǎn),可得出和范圍;對(duì)于B:由已知得,,不妨設(shè),則,分別求出在點(diǎn)A,點(diǎn)B處的切線方程,由兩切線方程求得交點(diǎn)的橫坐標(biāo),可得結(jié)論;對(duì)于C:要證,即證,即證,因?yàn)椋孕枳C.構(gòu)造函數(shù),,求導(dǎo),分析導(dǎo)函數(shù)的正負(fù),得出所構(gòu)造的函數(shù)的單調(diào)性和最值,可得結(jié)論;對(duì)于D:設(shè)直線AM交軸于C,直線BM交軸于點(diǎn)D,作軸于點(diǎn)E.若,則,即,根據(jù)正切函數(shù)的差角公式和切線的斜率得,【詳解】對(duì)于A:當(dāng)時(shí),直線與曲線沒(méi)有兩個(gè)不同交點(diǎn),所以,如圖1所示,當(dāng)直線與曲線相切時(shí),設(shè)切點(diǎn)為,則,所以切線方程為:,代入點(diǎn)解得,此時(shí),所以直線與曲線相切,所以當(dāng)時(shí)直線與曲線有兩個(gè)不同的交點(diǎn),當(dāng)時(shí),直線與曲線沒(méi)有交點(diǎn),故A正確;對(duì)于B:由已知得,,不妨設(shè),則,又在點(diǎn)A處的切線方程為:,在點(diǎn)B處的切線方程為,兩式相減得,將,代入得,因?yàn)?,所以,即,故B正確;對(duì)于C:要證,即證,即證,因?yàn)?,所以需證.令,則,令,則點(diǎn)A、B是與的兩個(gè)交點(diǎn),令,所以,令,則,所以當(dāng)時(shí),,單調(diào)遞減,而,,所以,所以時(shí),,所以單調(diào)遞減,所以,即,又,所以,而,所以當(dāng)時(shí),,單調(diào)遞增,又,,所以,即,故C正確;對(duì)于D:設(shè)直線AM交軸于C,直線BM交軸于點(diǎn)D,作軸于點(diǎn)E.若,則,即,所以,化簡(jiǎn)得,即,所以,即,令,則,又,所以,而,所以方程無(wú)解,所以不存在,使得,故D不正確,故選:ABC.【點(diǎn)睛】方法點(diǎn)睛:導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,?;癁椴坏仁胶愠闪?wèn)題.注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn)、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問(wèn)題處理.5.(2021·江蘇·高二單元測(cè)試)已知函數(shù),為常數(shù),若函數(shù)有兩個(gè)零點(diǎn)、,則下列說(shuō)法正確的是(
)A. B. C. D.【答案】ACD【分析】由已知得出,化簡(jiǎn)變形后可判斷A選項(xiàng)的正誤;取可判斷B選項(xiàng)的正誤;利用構(gòu)造函數(shù)法證明CD選項(xiàng)中的不等式,可判斷CD選項(xiàng)的正誤.【詳解】由可得,可知直線與函數(shù)在上的圖象有兩個(gè)交點(diǎn),,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,則,且當(dāng)時(shí),,如下圖所示:當(dāng)時(shí),直線與函數(shù)在上的圖象有兩個(gè)交點(diǎn).對(duì)于A選項(xiàng),由已知可得,消去可得,A對(duì);對(duì)于B選項(xiàng),設(shè),取,則,所以,,故,B錯(cuò);對(duì)于C選項(xiàng),設(shè),因?yàn)椋瑒t,所以,,,則,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,C對(duì);對(duì)于D選項(xiàng),,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞減,則,D對(duì).故選:ACD.【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)證明不等式問(wèn)題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進(jìn)而構(gòu)造輔助函數(shù);(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見(jiàn)放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).6.(2021·全國(guó)·模擬預(yù)測(cè))已知函數(shù),則(
)A.B.若有兩個(gè)不相等的實(shí)根、,則C.D.若,x,y均為正數(shù),則【答案】AD【分析】A:代入直接計(jì)算比較大小;B:求的導(dǎo)函數(shù),分析單調(diào)性,可得當(dāng)有兩個(gè)不相等實(shí)根時(shí)、的范圍,不妨設(shè),則有,比較的大小關(guān)系,因?yàn)?,可?gòu)造,求導(dǎo)求單調(diào)性,計(jì)算可得成立,可證;C:用在上單調(diào)遞增,構(gòu)造可證明;D:令,解出,,做差可證明.【詳解】解:對(duì)于A:,又,,,所以,則有,A正確;對(duì)于B:若有兩個(gè)不相等的實(shí)根、,則,故B不正確;證明如下:函數(shù),定義域?yàn)?,則,當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞增,在上單調(diào)遞減,則且時(shí),有,所以若有兩個(gè)不相等的實(shí)根、,有,不妨設(shè),有,要證,只需證,且,又,所以只需證,令則有當(dāng)時(shí),,,所以有,即在上單調(diào)遞增,且,所以恒成立,即,即,即.對(duì)于C:由B可知,在上單調(diào)遞增,則有,即,則有,故C不正確;對(duì)于D:令,則,,,,,故D正確;故選:AD.【點(diǎn)睛】知識(shí)點(diǎn)點(diǎn)睛:(1)給定函數(shù)比較大小的問(wèn)題,需判斷函數(shù)單調(diào)性,根據(jù)單調(diào)性以及需要比較的數(shù)值構(gòu)造函數(shù),利用函數(shù)的單調(diào)性可比較大??;(2)極值點(diǎn)偏移法證明不等式,先求函數(shù)的導(dǎo)數(shù),找到極值點(diǎn),分析兩根相等時(shí)兩根的范圍,根據(jù)范圍以及函數(shù)值相等構(gòu)造新的函數(shù),研究新函數(shù)的單調(diào)性及最值,判斷新函數(shù)小于或大于零恒成立,即可證明不等式.7.(2021·全國(guó)·高二單元測(cè)試)關(guān)于函數(shù)f(x)=+lnx,則下列結(jié)論正確的是()A.x=2是f(x)的極小值點(diǎn)B.函數(shù)y=f(x)-x有且只有1個(gè)零點(diǎn)C.對(duì)任意兩個(gè)正實(shí)數(shù)x1,x2,且x2>x1,若f(x1)=f(x2),則x1+x2>4D.存在正實(shí)數(shù)k,使得f(x)>kx恒成立【答案】ABC【分析】利用導(dǎo)函數(shù)求解極值點(diǎn),判斷出A選項(xiàng);利用導(dǎo)函數(shù)得到g(x)在(0,+∞)上單調(diào)遞減,又g(1)=1>0,g(2)=ln2-1<0,有零點(diǎn)存在性定理判斷B選項(xiàng);構(gòu)造差函數(shù)解決極值點(diǎn)偏移問(wèn)題;D選項(xiàng),問(wèn)題轉(zhuǎn)化為存在正實(shí)數(shù)k,使得恒成立,構(gòu)造函數(shù),利用二次求導(dǎo)得到其單調(diào)性,最終求得答案.【詳解】對(duì)于函數(shù)f(x)=+lnx,其定義域?yàn)椋?,+∞),由于,令可得x=2,當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),,可知x=2是f(x)的極小值點(diǎn),選項(xiàng)A正確;設(shè)g(x)=f(x)-x,則,可知g(x)在(0,+∞)上單調(diào)遞減,又g(1)=1>0,g(2)=ln2-1<0,所以方程g(x)=0有且僅有一個(gè)根,即函數(shù)y=f(x)-x有且只有1個(gè)零點(diǎn),選項(xiàng)B正確;由x=2是f(x)的極小值點(diǎn),可知若f(x1)=f(x2)時(shí),x2>2>x1>0,易知4-x1>2,則f(4-x1)-f(x2)=f(4-x1)-f(x1)=,令,則t>1,,則f(4-x1)-f(x2)==F(t)(t>1),,則F(t)在(1,+∞)上單調(diào)遞減,F(xiàn)(t)<F(1)=0,故f(4-x1)-f(x2)<0,又f(x)在(2,+∞)上單調(diào)遞增,則4-x1<x2,故x1+x2>4,選項(xiàng)C正確;令f(x)>kx得:,即.設(shè),x∈(0,+∞),則,設(shè)H(x)=x-xlnx-4,x∈(0,+∞),則,因?yàn)?,?dāng)0<x<1時(shí),,當(dāng)x>1時(shí),,所以函數(shù)H(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,所以H(x)max=H(1)=1-0-4=-3<0,則<0恒成立,所以函數(shù)h(x)在(0,+∞)上單調(diào)遞減,所以不可能存在正實(shí)數(shù)k,使得恒成立.故選D不正確.故選:ABC.【點(diǎn)睛】極值點(diǎn)偏移問(wèn)題的一般處理方法是構(gòu)造差函數(shù),利用函數(shù)單調(diào)性及極值,最值求得結(jié)果.三、解答題8.(2022·廣西貴港·高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)證明不等式:SKIPIF1<0,SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析【分析】(1)移項(xiàng)構(gòu)造新函數(shù)SKIPIF1<0,應(yīng)用導(dǎo)數(shù)求函數(shù)的單調(diào)性,根據(jù)最值證明結(jié)論成立.(2)根據(jù)SKIPIF1<0,得到SKIPIF1<0,結(jié)合(1)及函數(shù)的單調(diào)性求出SKIPIF1<0,換元證明SKIPIF1<0成立即可.【詳解】(1)令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立;(2)由SKIPIF1<0得SKIPIF1<0,整理得SKIPIF1<0,不妨設(shè)SKIPIF1<0,由(1)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故有SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.下面證明SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,即證明SKIPIF1<0,其中SKIPIF1<0,故只需證明SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.9.(2022·湖南·長(zhǎng)郡中學(xué)高二階段練習(xí))設(shè)函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0存在兩個(gè)零點(diǎn)SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增(2)證明見(jiàn)解析.【分析】(1)求出函數(shù)的導(dǎo)數(shù),分類討論a的取值范圍,根據(jù)導(dǎo)數(shù)的正負(fù),即可得答案;(2)利用函數(shù)零點(diǎn)可得SKIPIF1<0,SKIPIF1<0,整理變形可得SKIPIF1<0,換元令SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0,需證明SKIPIF1<0,由此構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)即可證明結(jié)論.【詳解】(1)由于SKIPIF1<0,則定義域?yàn)镾KIPIF1<0,可得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),∵SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),∵SKIPIF1<0,∴由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.(2)證明:∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,兩式相加得SKIPIF1<0,相減得SKIPIF1<0,消去SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,也就是要證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上為增函數(shù),SKIPIF1<0,即SKIPIF1<0成立,故SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用導(dǎo)數(shù)證明關(guān)于函數(shù)零點(diǎn)的不等式問(wèn)題,關(guān)鍵在于正確地變式消去參數(shù),進(jìn)而構(gòu)造函數(shù),本題中利用SKIPIF1<0,SKIPIF1<0,將兩式相加減,進(jìn)而消去a,可得SKIPIF1<0,換元令SKIPIF1<0,得SKIPIF1<0,進(jìn)而根據(jù)SKIPIF1<0,需證SKIPIF1<0,從而構(gòu)造函數(shù),解決問(wèn)題.10.(2021·河南新鄉(xiāng)·高三階段練習(xí)(理))已知函數(shù).(1)求的極值.(2)若,,證明:.【答案】(1)極大值為,的極小值為(2)證明見(jiàn)解析【分析】(1)利用導(dǎo)數(shù)求出函數(shù)的單調(diào)性即得解;(2)由(1)可知,設(shè),,證明在上恒成立,即得解.(1)(1)由題意可得.當(dāng)或時(shí),;當(dāng)時(shí),.所以在與上單調(diào)遞增,在上單調(diào)遞減.故的極大值為,的極小值為.(2)證明:由(1)可知.設(shè),,則.設(shè),則.因?yàn)?,所以在上恒成立,即在上單調(diào)遞增,因?yàn)?,所以在上恒成立,即在上單調(diào)遞增,因?yàn)?,所以在上恒成?因?yàn)?,所以,因?yàn)?,所?由(1)可知在上單調(diào)遞增,且,,則,即.【沖刺提升】1.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)證明:曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線SKIPIF1<0恒過(guò)定點(diǎn);(2)若SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)恒過(guò)定點(diǎn)SKIPIF1<0,證明見(jiàn)解析;(2)證明見(jiàn)解析.【分析】(1)利用導(dǎo)數(shù)求出曲線在點(diǎn)SKIPIF1<0處的切線方程,進(jìn)而可證得結(jié)論;(2)令SKIPIF1<0,可得SKIPIF1<0,構(gòu)造SKIPIF1<0,用導(dǎo)數(shù)可證得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,顯然恒過(guò)定點(diǎn)SKIPIF1<0.(2)若SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.因?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第(2)問(wèn)的關(guān)鍵點(diǎn)是:構(gòu)造SKIPIF1<0,用導(dǎo)數(shù)證得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,進(jìn)而得到SKIPIF1<0.2.(2021·新疆·克拉瑪依市第一中學(xué)高二階段練習(xí))已知定義在上的函數(shù).(1)若為定義域上的增函數(shù),求實(shí)數(shù)的取值范圍;(2)若,,,為的極小值,求證:.【答案】(1);(2)證明見(jiàn)解析.【分析】(1)由單調(diào)性可知在上恒成立,分離變量可得;利用導(dǎo)數(shù)可求得的最大值,由此可得的范圍;(2)利用導(dǎo)數(shù),結(jié)合零點(diǎn)存在定理可確定,在上單調(diào)遞減,在上單調(diào)遞增;構(gòu)造函數(shù),利用導(dǎo)數(shù)可求得單調(diào)性,得到,從而得到,根據(jù)自變量的范圍,結(jié)合在上的單調(diào)性可證得結(jié)論.【詳解】(1)由得:.為上的增函數(shù),在上恒成立,即,令,則,在上單調(diào)遞減,,即,,即實(shí)數(shù)的取值范圍為.(2)當(dāng)時(shí),,則,,在上單調(diào)遞增,又,,,使得,且當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞減,在上單調(diào)遞增,則為的極小值.設(shè),,,,設(shè),,.,,又,,在上單調(diào)遞增,,,在上單調(diào)遞增,,,,,又在上單調(diào)遞減,,即.【點(diǎn)睛】方法點(diǎn)睛:處理極值點(diǎn)偏移問(wèn)題中的類似于(為的兩根)的問(wèn)題的基本步驟如下:①求導(dǎo)確定的單調(diào)性,得到的范圍;②構(gòu)造函數(shù),求導(dǎo)后可得恒正或恒負(fù);③得到與的大小關(guān)系后,將置換為;④根據(jù)與所處的范圍,結(jié)合的單調(diào)性,可得到與的大小關(guān)系,由此證得結(jié)論.3.(2022·全國(guó)·模擬預(yù)測(cè))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(1)當(dāng)SKIPIF1<0時(shí),①若函數(shù)SKIPIF1<0的最大值為0,求實(shí)數(shù)SKIPIF1<0的值;②若存在實(shí)數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.(2)當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,若SKIPIF1<0,其中SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)①SKIPIF1<0;②SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)①當(dāng)SKIPIF1<0時(shí),對(duì)SKIPIF1<0求導(dǎo),得到函數(shù)單調(diào)性,即可求得函數(shù)的最值.②要求SKIPIF1<0恒成立時(shí)SKIPIF1<0的取值范圍,等價(jià)于SKIPIF1<0,構(gòu)造新的函數(shù),將問(wèn)題轉(zhuǎn)化為求新構(gòu)造函數(shù)的最大值,問(wèn)題即可解決.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求導(dǎo)即可得到SKIPIF1<0的函數(shù)表達(dá)式,對(duì)SKIPIF1<0求導(dǎo),得到函數(shù)SKIPIF1<0的圖像,設(shè)SKIPIF1<0,則要證明SKIPIF1<0,只需要證明SKIPIF1<0,構(gòu)造新函數(shù)SKIPIF1<0,求導(dǎo)研究函數(shù)的單調(diào)性,證明SKIPIF1<0在SKIPIF1<0上恒成立即可.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.①易知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.②解法一,不等式SKIPIF1<0.設(shè)SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,則由①知SKIPIF1<0,所以存在實(shí)數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,等價(jià)于存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立.易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.解法二,不等式SKIPIF1<0.設(shè)SKIPIF1<0,則存在實(shí)數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,等價(jià)于存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立.易知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),易知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故可作出SKIPIF1<0的大致圖象如圖所示.-2不妨設(shè)SKIPIF1<0,由圖易知SKIPIF1<0.要證SKIPIF1<0,只需證SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以只需證SKIPIF1<0,又SKIPIF1<0,所以只需證SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立.設(shè)SKIPIF1<0,則SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立,又SKIPIF1<0,所以SKIPIF1<0,原不等式得證.【點(diǎn)睛】處理極值點(diǎn)偏移問(wèn)題中的類似于SKIPIF1<0(SKIPIF1<0滿足SKIPIF1<0)的問(wèn)題的基本步驟如下:①求導(dǎo),確定SKIPIF1<0的單調(diào)性,得到SKIPIF1<0的范圍;②構(gòu)造函數(shù)SKIPIF1<0,求導(dǎo)后可得SKIPIF1<0恒正或恒負(fù);③得到SKIPIF1<0與SKIPIF1<0的大小關(guān)系后,將SKIPIF1<0置換為SKIPIF1<0;④根據(jù)SKIPIF1<0與SKIPIF1<0所處的范圍,結(jié)合SKIPIF1<0的單調(diào)性,可得到SKIPIF1<0與SKIPIF1<0的大小關(guān)系,由此證得結(jié)論.4.(2022·江蘇南通·高三期中)已知SKIPIF1<0,其極小值為-4.(1)求SKIPIF1<0的值;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不相等的實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)3(2)證明見(jiàn)解析【分析】(1)求導(dǎo),分SKIPIF1<0、SKIPIF1<0和SKIPIF1<0三種情況求SKIPIF1<0的極小值,列方程求解即可;(2)構(gòu)造函數(shù)SKIPIF1<0,根據(jù)SKIPIF1<0的單調(diào)性和SKIPIF1<0得到SKIPIF1<0,再結(jié)合SKIPIF1<0和SKIPIF1<0的單調(diào)性即可得到SKIPIF1<0;設(shè)SKIPIF1<0,通過(guò)比較SKIPIF1<0和SKIPIF1<0的大小關(guān)系得到SKIPIF1<0,SKIPIF1<0,再結(jié)合SKIPIF1<0即可得到SKIPIF1<0.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,沒(méi)有極值,舍去.當(dāng)SKIPIF1<0時(shí),在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的極小值為SKIPIF1<0,舍去當(dāng)SKIPIF1<0時(shí),在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的極小值為SKIPIF1<0.所以SKIPIF1<0.(2)由(1)知,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以不妨設(shè)SKIPIF1<0.下面先證SKIPIF1<0.即證SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)閰^(qū)間SKIPIF1<0上,SKIPIF1<0單調(diào)遞減,只要證SKIPIF1<0,又因?yàn)镾KIPIF1<0,只要證SKIPIF1<0,只要證SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0.下面證SKIPIF1<0.設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,在區(qū)間SKIPIF1<0上,SKIPIF1<0;在區(qū)間SKIPIF1<0上,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【點(diǎn)睛】極值點(diǎn)偏移問(wèn)題中(極值點(diǎn)為SKIPIF1<0),證明SKIPIF1<0或SKIPIF1<0的方法:①構(gòu)造SKIPIF1<0,②確定SKIPIF1<0的單調(diào)性,③結(jié)合特殊值得到SKIPIF1<0或SKIPIF1<0,再利用SKIPIF1<0,得到SKIPIF1<0與SKIPIF1<0的大小關(guān)系,④利用SKIPIF1<0的單調(diào)性即可得到SKIPIF1<0或SKIPIF1<0.5.(2022·云南·昆明一中模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0,且SKIPIF1<0恒成立.(1)求SKIPIF1<0的最大值;(2)當(dāng)SKIPIF1<0取得最大值時(shí),設(shè)SKIPIF1<0,若SKIPIF1<0有兩個(gè)零點(diǎn)為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)先求導(dǎo)得SKIPIF1<0,對(duì)SKIPIF1<0進(jìn)行分類討論,求出SKIPIF1<0,即SKIPIF1<0,進(jìn)而求得SKIPIF1<0的最大值;(2)由(1)得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0整理得SKIPIF1<0,SKIPIF1<0,作差變形得SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,代換SKIPIF1<0得SKIPIF1<0,構(gòu)造SKIPIF1<0,利用導(dǎo)數(shù)可證不等式恒成立.【詳解】(1)由題意得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)顯然不成立;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單減,在SKIPIF1<0上單增,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0;(2)由(1)式可知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0有兩個(gè)零點(diǎn)為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,要證不等式SKIPIF1<0恒成立,等價(jià)于SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,得證.6.(2022·新疆·高三期中(理))已知函數(shù)SKIPIF1<0的兩個(gè)不同極值點(diǎn)分別為SKIPIF1<0,SKIPIF1<0(SKIPIF1<0).(1)求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)證明:SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底數(shù)).【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)把函數(shù)SKIPIF1<0有兩個(gè)不同極值點(diǎn)SKIPIF1<0,SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根,令SKIPIF1<0,結(jié)合其導(dǎo)數(shù)分析SKIPIF1<0值域情況,從而得到實(shí)數(shù)SKIPIF1<0的取值范圍;(2)由題意可知SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個(gè)根,從而有SKIPIF1<0,變形可得:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,再利用分析法即可證明SKIPIF1<0.【詳解】(1)解:因?yàn)镾KIPIF1<0有兩個(gè)不同極值點(diǎn)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0有兩個(gè)不同的根SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0得SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.(2)證明:由(1)可知SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個(gè)根,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0成立,故SKIPIF1<0成立.7.(2022·貴州·貴陽(yáng)一中高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)試判斷函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)解SKIPIF1<0,試說(shuō)明SKIPIF1<0.【答案】(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.【分析】(1)由導(dǎo)數(shù)法判斷單調(diào)性即可;(2)原方程化簡(jiǎn)為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則要證SKIPIF1<0結(jié)合對(duì)數(shù)運(yùn)算法則,等價(jià)于證SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,只要證明SKIPIF1<0,SKIPIF1<0時(shí)恒成立即可,最后由導(dǎo)數(shù)法證明即可.【詳解】(1)由題可知SKIPIF1<0的定義域是SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.綜上:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)證明:因?yàn)镾KIPIF1<0有兩個(gè)不同實(shí)數(shù)解SKIPIF1<0,即SKIPIF1<0有兩個(gè)不同實(shí)數(shù)解SKIPIF1<0,又由于SKIPIF1<0,故不妨設(shè)令SKIPIF1<0,且有SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以只要證明SKIPIF1<0,SKIPIF1<0時(shí)恒成立,令SKIPIF1<0,SKIPIF1<0,由于已知SKIPIF1<0,∴SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上遞增,∴SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0恒成立,即SKIPIF1<0恒成立,從而證明SKIPIF1<0.【點(diǎn)睛】要證SKIPIF1<0,關(guān)鍵是利用條件將不等式變形,將SKIPIF1<0作為整體換元,使原不等式變成只含一個(gè)變量的不等式恒成立問(wèn)題.本題SKIPIF1<0,故可結(jié)合對(duì)數(shù)運(yùn)算性質(zhì)進(jìn)行變形,最后不等式等價(jià)于證SKIPIF1<08.(2022·全國(guó)·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).(1)若函數(shù)SKIPIF1<0的最小值為2,求SKIPIF1<0的值;(2)在(1)的條件下,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根SKIPIF1<0,且SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)由題知SKIPIF1<0,再根據(jù)SKIPIF1<0和SKIPIF1<0時(shí)的情況求解函數(shù)最小值即可得答案;(2)方法一:根據(jù)題意得SKIPIF1<0,進(jìn)而令SKIPIF1<0得SKIPIF1<0,再令SKIPIF1<0,求函數(shù)最小值即可;方法二:由題知方程SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,進(jìn)而根據(jù)極值點(diǎn)偏移問(wèn)題求解即可.【詳解】(1)解:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0不存在最小值;所以SKIPIF1<0不合題意,故SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,解得SKIPIF1<0.所以,SKIPIF1<0的值為SKIPIF1<0(2)解:方法一:由(1)知,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0為方程SKIPIF1<0的兩個(gè)不同的實(shí)數(shù)根,所以SKIPIF1<0①;SKIPIF1<0②.①-②得:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,有SKIPIF1<0,所以SKIPIF1<0,從而得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,得證.方法二:由(1)知,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0為方程SKIPIF1<0的兩個(gè)不同的實(shí)數(shù)根,所以SKIPIF1<0,即方程SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.即SKIPIF1<0,得證.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問(wèn)解題的關(guān)鍵在于由SKIPIF1<0,結(jié)合SKIPIF1<0得到SKIPIF1<0,再根據(jù)函數(shù)SKIPIF1<0的性質(zhì)得SKIPIF1<0,進(jìn)而證明結(jié)論;9.(2022·河南·高三期中(理))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0,且SKIPIF1<0,使得SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)證明見(jiàn)解析【分析】(1)利用導(dǎo)函數(shù)的幾何意義求解即可;(2)由(1)得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,利用導(dǎo)函數(shù)的幾何意義可得SKIPIF1<0,從而可得SKIPIF1<0;設(shè)SKIPIF1<0,SKIPIF1<0,利用導(dǎo)函數(shù)的幾何意義可得SKIPIF1<0,從而可得SKIPIF1<0,兩式聯(lián)立即可求解.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由(Ⅰ)可知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 晉中山西晉中市太谷區(qū)面向2025屆公費(fèi)師范生招聘教師18人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年中國(guó)太子佛工藝品市場(chǎng)調(diào)查研究報(bào)告
- 2025至2031年中國(guó)高壓透鏡行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年藝術(shù)道閘項(xiàng)目可行性研究報(bào)告
- 2025年紅外線按摩棒項(xiàng)目可行性研究報(bào)告
- 2025年電加熱針織物呢毯預(yù)縮機(jī)項(xiàng)目可行性研究報(bào)告
- 成都四川成都天府國(guó)際競(jìng)技訓(xùn)練中心招聘運(yùn)動(dòng)員4人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年曲印項(xiàng)目可行性研究報(bào)告
- 2025年揉切粉碎機(jī)項(xiàng)目可行性研究報(bào)告
- 2025年安康魚野菜串項(xiàng)目可行性研究報(bào)告
- 青島中國(guó)(山東)自由貿(mào)易試驗(yàn)區(qū)青島片區(qū)(青島前灣綜合保稅區(qū))管理委員會(huì)選聘35人筆試歷年參考題庫(kù)附帶答案詳解
- GB/T 13228-2015工業(yè)炸藥爆速測(cè)定方法
- CB/T 102-1996錫基合金軸瓦鑄造技術(shù)條件
- 羅森便利店QSC標(biāo)準(zhǔn)課件講義
- 售后服務(wù)的流程圖
- 急診科進(jìn)修匯報(bào)課件
- DL∕T 617-2019 氣體絕緣金屬封閉開(kāi)關(guān)設(shè)備技術(shù)條件
- 信息技術(shù)基礎(chǔ)ppt課件(完整版)
- 弘揚(yáng)與傳承中華傳統(tǒng)文化課件(共16張PPT)
- 鋼琴基礎(chǔ)教程教案
- 電子課件-《飯店服務(wù)心理(第四版)》-A11-2549
評(píng)論
0/150
提交評(píng)論