新高考數(shù)學二輪復習強化練習專題08 極值點偏移問題(練)(解析版)_第1頁
新高考數(shù)學二輪復習強化練習專題08 極值點偏移問題(練)(解析版)_第2頁
新高考數(shù)學二輪復習強化練習專題08 極值點偏移問題(練)(解析版)_第3頁
新高考數(shù)學二輪復習強化練習專題08 極值點偏移問題(練)(解析版)_第4頁
新高考數(shù)學二輪復習強化練習專題08 極值點偏移問題(練)(解析版)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

第一篇熱點、難點突破篇專題08極值點偏移問題(練)【對點演練】一、單選題1.(2021·江西·鷹潭一中高三階段練習(文))關于函數(shù)SKIPIF1<0,下列說法正確的是(

)A.SKIPIF1<0是SKIPIF1<0的極大值點B.函數(shù)SKIPIF1<0有2個零點C.存在正整數(shù)k,使得SKIPIF1<0恒成立D.對任意兩個正實數(shù)SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0【答案】D【分析】對A,求導得到單調(diào)區(qū)間即可判斷;對B,對函數(shù)SKIPIF1<0求導得出單調(diào)區(qū)間即可進一步得到結(jié)果;對C,分離參數(shù)SKIPIF1<0,通過SKIPIF1<0的單調(diào)性和函數(shù)變化趨勢即可判斷;對D,根據(jù)函數(shù)f(x)的單調(diào)性,將自變量比較大小轉(zhuǎn)化為函數(shù)值比較大小,用極值點偏移的方法得到結(jié)論.【詳解】對A,SKIPIF1<0,函數(shù)在SKIPIF1<0單減,在SKIPIF1<0單增,SKIPIF1<0是SKIPIF1<0的極小值點,A錯誤;對B,SKIPIF1<0,函數(shù)在SKIPIF1<0單減,至多一個零點,B錯誤;對C,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,函數(shù)在SKIPIF1<0單增,在SKIPIF1<0單減,所以SKIPIF1<0,∴SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0單減,無最小值,且當SKIPIF1<0時,SKIPIF1<0,C錯誤;對D,不妨設SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0單增,則SKIPIF1<0,即證:,記,所以,所以在單減,所以,即,所以,D正確.故選:D.【點睛】本題為函數(shù)的綜合題,不論分參也好還是極值點偏移也好,還是零點問題、最值問題,最終都要對函數(shù)的單調(diào)性進行討論,進而得到答案;需要注意的是,導數(shù)綜合題一定要結(jié)合函數(shù)的圖象輔助解決,平常注意對導數(shù)的題目進行歸類,總結(jié)做法.2.(2021·浙江·鎮(zhèn)海中學高三開學考試)已知函數(shù),對于正實數(shù)a,若關于t的方程恰有三個不同的正實數(shù)根,則a的取值范圍是(

)A. B. C. D.【答案】D【分析】研究的圖像可知,若,令,則,且,可以推出,或,通過對數(shù)不等式寫出關于的不等式,即可求出的范圍【詳解】因為,,令得:;令得:,所以在區(qū)間單調(diào)遞增,在單調(diào)遞減,且時,恒成立,的圖像如下:令,則,且①當時,,成立,所以是方程的一個實數(shù)根②當時,由得:,令則:,兩式相減得:,兩式相加得:所以:,由對數(shù)均值不等式得:所以:,且,所以,,即:所以故選:D【點睛】題目考察到了極值點偏移的思想,用對數(shù)均值不等式解決,完整的對數(shù)均值不等式為:,可用兩邊同除,令整體換元的思想來構(gòu)造函數(shù),證明不等式成立二、多選題3.(2021·河北·高三階段練習)已知函數(shù),則下面結(jié)論成立的是(

)A.當時,函數(shù)有兩個實數(shù)根B.函數(shù)只有一個實數(shù)根,則C.若函數(shù)有兩個實數(shù)根,,則D.若函數(shù)有兩個實數(shù)根,,則【答案】AC【分析】令參變分離可得,令,利用導數(shù)說明其單調(diào)性,即可得到函數(shù)的函數(shù)圖象,從而判斷A、B,若函數(shù)有兩個實數(shù)根,,則,即可得到,再令,,利用導數(shù)研究函數(shù)的單調(diào)性,即可判斷C、D;【詳解】解:根據(jù)題意,令則,令,則,所以當時,,當時,,即函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,畫出函數(shù)圖象如下:函數(shù)的最大值在處取得,最大值為,所以選項A正確,當或時函數(shù)只有一個實數(shù)根,故選項B不正確,若函數(shù)有兩個實數(shù)根,,則,所以,令,,對函數(shù)求導可得,,令,則恒成立,所以函數(shù)單調(diào)遞增,又,所以,所以在時單調(diào)遞增,的函數(shù)圖象如下所示:可得,所以選項C正確,選項D不正確.故選:AC4.(2021·全國·高二專題練習)若直線與曲線相交于不同兩點,,曲線在A,點處切線交于點,則(

)A. B.C. D.存在,使得【答案】ABC【分析】對于A:求出過原點的切線的斜率為,根據(jù)直線與曲線有兩個不同的交點,可得出和范圍;對于B:由已知得,,不妨設,則,分別求出在點A,點B處的切線方程,由兩切線方程求得交點的橫坐標,可得結(jié)論;對于C:要證,即證,即證,因為,所以需證.構(gòu)造函數(shù),,求導,分析導函數(shù)的正負,得出所構(gòu)造的函數(shù)的單調(diào)性和最值,可得結(jié)論;對于D:設直線AM交軸于C,直線BM交軸于點D,作軸于點E.若,則,即,根據(jù)正切函數(shù)的差角公式和切線的斜率得,【詳解】對于A:當時,直線與曲線沒有兩個不同交點,所以,如圖1所示,當直線與曲線相切時,設切點為,則,所以切線方程為:,代入點解得,此時,所以直線與曲線相切,所以當時直線與曲線有兩個不同的交點,當時,直線與曲線沒有交點,故A正確;對于B:由已知得,,不妨設,則,又在點A處的切線方程為:,在點B處的切線方程為,兩式相減得,將,代入得,因為,所以,即,故B正確;對于C:要證,即證,即證,因為,所以需證.令,則,令,則點A、B是與的兩個交點,令,所以,令,則,所以當時,,單調(diào)遞減,而,,所以,所以時,,所以單調(diào)遞減,所以,即,又,所以,而,所以當時,,單調(diào)遞增,又,,所以,即,故C正確;對于D:設直線AM交軸于C,直線BM交軸于點D,作軸于點E.若,則,即,所以,化簡得,即,所以,即,令,則,又,所以,而,所以方程無解,所以不存在,使得,故D不正確,故選:ABC.【點睛】方法點睛:導函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導數(shù)研究含參函數(shù)的單調(diào)性,常化為不等式恒成立問題.注意分類討論與數(shù)形結(jié)合思想的應用;二是函數(shù)的零點、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問題處理.5.(2021·江蘇·高二單元測試)已知函數(shù),為常數(shù),若函數(shù)有兩個零點、,則下列說法正確的是(

)A. B. C. D.【答案】ACD【分析】由已知得出,化簡變形后可判斷A選項的正誤;取可判斷B選項的正誤;利用構(gòu)造函數(shù)法證明CD選項中的不等式,可判斷CD選項的正誤.【詳解】由可得,可知直線與函數(shù)在上的圖象有兩個交點,,當時,,此時函數(shù)單調(diào)遞增,當時,,此時函數(shù)單調(diào)遞減,則,且當時,,如下圖所示:當時,直線與函數(shù)在上的圖象有兩個交點.對于A選項,由已知可得,消去可得,A對;對于B選項,設,取,則,所以,,故,B錯;對于C選項,設,因為,則,所以,,,則,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,C對;對于D選項,,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞減,則,D對.故選:ACD.【點睛】方法點睛:利用導數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進而構(gòu)造輔助函數(shù);(2)適當放縮構(gòu)造法:一是根據(jù)已知條件適當放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).6.(2021·全國·模擬預測)已知函數(shù),則(

)A.B.若有兩個不相等的實根、,則C.D.若,x,y均為正數(shù),則【答案】AD【分析】A:代入直接計算比較大?。籅:求的導函數(shù),分析單調(diào)性,可得當有兩個不相等實根時、的范圍,不妨設,則有,比較的大小關系,因為,可構(gòu)造,求導求單調(diào)性,計算可得成立,可證;C:用在上單調(diào)遞增,構(gòu)造可證明;D:令,解出,,做差可證明.【詳解】解:對于A:,又,,,所以,則有,A正確;對于B:若有兩個不相等的實根、,則,故B不正確;證明如下:函數(shù),定義域為,則,當時,;當時,;所以在上單調(diào)遞增,在上單調(diào)遞減,則且時,有,所以若有兩個不相等的實根、,有,不妨設,有,要證,只需證,且,又,所以只需證,令則有當時,,,所以有,即在上單調(diào)遞增,且,所以恒成立,即,即,即.對于C:由B可知,在上單調(diào)遞增,則有,即,則有,故C不正確;對于D:令,則,,,,,故D正確;故選:AD.【點睛】知識點點睛:(1)給定函數(shù)比較大小的問題,需判斷函數(shù)單調(diào)性,根據(jù)單調(diào)性以及需要比較的數(shù)值構(gòu)造函數(shù),利用函數(shù)的單調(diào)性可比較大?。唬?)極值點偏移法證明不等式,先求函數(shù)的導數(shù),找到極值點,分析兩根相等時兩根的范圍,根據(jù)范圍以及函數(shù)值相等構(gòu)造新的函數(shù),研究新函數(shù)的單調(diào)性及最值,判斷新函數(shù)小于或大于零恒成立,即可證明不等式.7.(2021·全國·高二單元測試)關于函數(shù)f(x)=+lnx,則下列結(jié)論正確的是()A.x=2是f(x)的極小值點B.函數(shù)y=f(x)-x有且只有1個零點C.對任意兩個正實數(shù)x1,x2,且x2>x1,若f(x1)=f(x2),則x1+x2>4D.存在正實數(shù)k,使得f(x)>kx恒成立【答案】ABC【分析】利用導函數(shù)求解極值點,判斷出A選項;利用導函數(shù)得到g(x)在(0,+∞)上單調(diào)遞減,又g(1)=1>0,g(2)=ln2-1<0,有零點存在性定理判斷B選項;構(gòu)造差函數(shù)解決極值點偏移問題;D選項,問題轉(zhuǎn)化為存在正實數(shù)k,使得恒成立,構(gòu)造函數(shù),利用二次求導得到其單調(diào)性,最終求得答案.【詳解】對于函數(shù)f(x)=+lnx,其定義域為(0,+∞),由于,令可得x=2,當0<x<2時,,當x>2時,,可知x=2是f(x)的極小值點,選項A正確;設g(x)=f(x)-x,則,可知g(x)在(0,+∞)上單調(diào)遞減,又g(1)=1>0,g(2)=ln2-1<0,所以方程g(x)=0有且僅有一個根,即函數(shù)y=f(x)-x有且只有1個零點,選項B正確;由x=2是f(x)的極小值點,可知若f(x1)=f(x2)時,x2>2>x1>0,易知4-x1>2,則f(4-x1)-f(x2)=f(4-x1)-f(x1)=,令,則t>1,,則f(4-x1)-f(x2)==F(t)(t>1),,則F(t)在(1,+∞)上單調(diào)遞減,F(xiàn)(t)<F(1)=0,故f(4-x1)-f(x2)<0,又f(x)在(2,+∞)上單調(diào)遞增,則4-x1<x2,故x1+x2>4,選項C正確;令f(x)>kx得:,即.設,x∈(0,+∞),則,設H(x)=x-xlnx-4,x∈(0,+∞),則,因為,當0<x<1時,,當x>1時,,所以函數(shù)H(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,所以H(x)max=H(1)=1-0-4=-3<0,則<0恒成立,所以函數(shù)h(x)在(0,+∞)上單調(diào)遞減,所以不可能存在正實數(shù)k,使得恒成立.故選D不正確.故選:ABC.【點睛】極值點偏移問題的一般處理方法是構(gòu)造差函數(shù),利用函數(shù)單調(diào)性及極值,最值求得結(jié)果.三、解答題8.(2022·廣西貴港·高三階段練習)已知函數(shù)SKIPIF1<0.(1)證明不等式:SKIPIF1<0,SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)證明見解析(2)證明見解析【分析】(1)移項構(gòu)造新函數(shù)SKIPIF1<0,應用導數(shù)求函數(shù)的單調(diào)性,根據(jù)最值證明結(jié)論成立.(2)根據(jù)SKIPIF1<0,得到SKIPIF1<0,結(jié)合(1)及函數(shù)的單調(diào)性求出SKIPIF1<0,換元證明SKIPIF1<0成立即可.【詳解】(1)令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立;(2)由SKIPIF1<0得SKIPIF1<0,整理得SKIPIF1<0,不妨設SKIPIF1<0,由(1)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故有SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.下面證明SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,即證明SKIPIF1<0,其中SKIPIF1<0,故只需證明SKIPIF1<0.設SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.9.(2022·湖南·長郡中學高二階段練習)設函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0存在兩個零點SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)當SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增(2)證明見解析.【分析】(1)求出函數(shù)的導數(shù),分類討論a的取值范圍,根據(jù)導數(shù)的正負,即可得答案;(2)利用函數(shù)零點可得SKIPIF1<0,SKIPIF1<0,整理變形可得SKIPIF1<0,換元令SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0,需證明SKIPIF1<0,由此構(gòu)造函數(shù)SKIPIF1<0,利用導數(shù)即可證明結(jié)論.【詳解】(1)由于SKIPIF1<0,則定義域為SKIPIF1<0,可得:SKIPIF1<0,當SKIPIF1<0時,∵SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,∵SKIPIF1<0,∴由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增.(2)證明:∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不妨設SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,兩式相加得SKIPIF1<0,相減得SKIPIF1<0,消去SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,也就是要證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上為增函數(shù),SKIPIF1<0,即SKIPIF1<0成立,故SKIPIF1<0.【點睛】關鍵點點睛:利用導數(shù)證明關于函數(shù)零點的不等式問題,關鍵在于正確地變式消去參數(shù),進而構(gòu)造函數(shù),本題中利用SKIPIF1<0,SKIPIF1<0,將兩式相加減,進而消去a,可得SKIPIF1<0,換元令SKIPIF1<0,得SKIPIF1<0,進而根據(jù)SKIPIF1<0,需證SKIPIF1<0,從而構(gòu)造函數(shù),解決問題.10.(2021·河南新鄉(xiāng)·高三階段練習(理))已知函數(shù).(1)求的極值.(2)若,,證明:.【答案】(1)極大值為,的極小值為(2)證明見解析【分析】(1)利用導數(shù)求出函數(shù)的單調(diào)性即得解;(2)由(1)可知,設,,證明在上恒成立,即得解.(1)(1)由題意可得.當或時,;當時,.所以在與上單調(diào)遞增,在上單調(diào)遞減.故的極大值為,的極小值為.(2)證明:由(1)可知.設,,則.設,則.因為,所以在上恒成立,即在上單調(diào)遞增,因為,所以在上恒成立,即在上單調(diào)遞增,因為,所以在上恒成立.因為,所以,因為,所以.由(1)可知在上單調(diào)遞增,且,,則,即.【沖刺提升】1.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0.(1)證明:曲線SKIPIF1<0在點SKIPIF1<0處的切線SKIPIF1<0恒過定點;(2)若SKIPIF1<0有兩個零點SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)恒過定點SKIPIF1<0,證明見解析;(2)證明見解析.【分析】(1)利用導數(shù)求出曲線在點SKIPIF1<0處的切線方程,進而可證得結(jié)論;(2)令SKIPIF1<0,可得SKIPIF1<0,構(gòu)造SKIPIF1<0,用導數(shù)可證得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.【詳解】(1)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則曲線SKIPIF1<0在點SKIPIF1<0處的切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,顯然恒過定點SKIPIF1<0.(2)若SKIPIF1<0有兩個零點SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.因為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.【點睛】關鍵點點睛:本題第(2)問的關鍵點是:構(gòu)造SKIPIF1<0,用導數(shù)證得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,進而得到SKIPIF1<0.2.(2021·新疆·克拉瑪依市第一中學高二階段練習)已知定義在上的函數(shù).(1)若為定義域上的增函數(shù),求實數(shù)的取值范圍;(2)若,,,為的極小值,求證:.【答案】(1);(2)證明見解析.【分析】(1)由單調(diào)性可知在上恒成立,分離變量可得;利用導數(shù)可求得的最大值,由此可得的范圍;(2)利用導數(shù),結(jié)合零點存在定理可確定,在上單調(diào)遞減,在上單調(diào)遞增;構(gòu)造函數(shù),利用導數(shù)可求得單調(diào)性,得到,從而得到,根據(jù)自變量的范圍,結(jié)合在上的單調(diào)性可證得結(jié)論.【詳解】(1)由得:.為上的增函數(shù),在上恒成立,即,令,則,在上單調(diào)遞減,,即,,即實數(shù)的取值范圍為.(2)當時,,則,,在上單調(diào)遞增,又,,,使得,且當時,;當時,;在上單調(diào)遞減,在上單調(diào)遞增,則為的極小值.設,,,,設,,.,,又,,在上單調(diào)遞增,,,在上單調(diào)遞增,,,,,又在上單調(diào)遞減,,即.【點睛】方法點睛:處理極值點偏移問題中的類似于(為的兩根)的問題的基本步驟如下:①求導確定的單調(diào)性,得到的范圍;②構(gòu)造函數(shù),求導后可得恒正或恒負;③得到與的大小關系后,將置換為;④根據(jù)與所處的范圍,結(jié)合的單調(diào)性,可得到與的大小關系,由此證得結(jié)論.3.(2022·全國·模擬預測)設函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導函數(shù).(1)當SKIPIF1<0時,①若函數(shù)SKIPIF1<0的最大值為0,求實數(shù)SKIPIF1<0的值;②若存在實數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.(2)當SKIPIF1<0時,設SKIPIF1<0,若SKIPIF1<0,其中SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)①SKIPIF1<0;②SKIPIF1<0(2)證明見解析【分析】(1)①當SKIPIF1<0時,對SKIPIF1<0求導,得到函數(shù)單調(diào)性,即可求得函數(shù)的最值.②要求SKIPIF1<0恒成立時SKIPIF1<0的取值范圍,等價于SKIPIF1<0,構(gòu)造新的函數(shù),將問題轉(zhuǎn)化為求新構(gòu)造函數(shù)的最大值,問題即可解決.(2)當SKIPIF1<0時,SKIPIF1<0,求導即可得到SKIPIF1<0的函數(shù)表達式,對SKIPIF1<0求導,得到函數(shù)SKIPIF1<0的圖像,設SKIPIF1<0,則要證明SKIPIF1<0,只需要證明SKIPIF1<0,構(gòu)造新函數(shù)SKIPIF1<0,求導研究函數(shù)的單調(diào)性,證明SKIPIF1<0在SKIPIF1<0上恒成立即可.【詳解】(1)當SKIPIF1<0時,SKIPIF1<0.①易知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.②解法一,不等式SKIPIF1<0.設SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,則由①知SKIPIF1<0,所以存在實數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,等價于存在實數(shù)SKIPIF1<0,使得SKIPIF1<0成立.易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.解法二,不等式SKIPIF1<0.設SKIPIF1<0,則存在實數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,等價于存在實數(shù)SKIPIF1<0,使得SKIPIF1<0成立.易知SKIPIF1<0,當SKIPIF1<0時,易知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(2)當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故可作出SKIPIF1<0的大致圖象如圖所示.-2不妨設SKIPIF1<0,由圖易知SKIPIF1<0.要證SKIPIF1<0,只需證SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以只需證SKIPIF1<0,又SKIPIF1<0,所以只需證SKIPIF1<0對任意的SKIPIF1<0恒成立.設SKIPIF1<0,則SKIPIF1<0.設SKIPIF1<0,則SKIPIF1<0,因為當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,又當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立,又SKIPIF1<0,所以SKIPIF1<0,原不等式得證.【點睛】處理極值點偏移問題中的類似于SKIPIF1<0(SKIPIF1<0滿足SKIPIF1<0)的問題的基本步驟如下:①求導,確定SKIPIF1<0的單調(diào)性,得到SKIPIF1<0的范圍;②構(gòu)造函數(shù)SKIPIF1<0,求導后可得SKIPIF1<0恒正或恒負;③得到SKIPIF1<0與SKIPIF1<0的大小關系后,將SKIPIF1<0置換為SKIPIF1<0;④根據(jù)SKIPIF1<0與SKIPIF1<0所處的范圍,結(jié)合SKIPIF1<0的單調(diào)性,可得到SKIPIF1<0與SKIPIF1<0的大小關系,由此證得結(jié)論.4.(2022·江蘇南通·高三期中)已知SKIPIF1<0,其極小值為-4.(1)求SKIPIF1<0的值;(2)若關于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有兩個不相等的實數(shù)根SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)3(2)證明見解析【分析】(1)求導,分SKIPIF1<0、SKIPIF1<0和SKIPIF1<0三種情況求SKIPIF1<0的極小值,列方程求解即可;(2)構(gòu)造函數(shù)SKIPIF1<0,根據(jù)SKIPIF1<0的單調(diào)性和SKIPIF1<0得到SKIPIF1<0,再結(jié)合SKIPIF1<0和SKIPIF1<0的單調(diào)性即可得到SKIPIF1<0;設SKIPIF1<0,通過比較SKIPIF1<0和SKIPIF1<0的大小關系得到SKIPIF1<0,SKIPIF1<0,再結(jié)合SKIPIF1<0即可得到SKIPIF1<0.【詳解】(1)因為SKIPIF1<0,所以SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,沒有極值,舍去.當SKIPIF1<0時,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當SKIPIF1<0時,SKIPIF1<0的極小值為SKIPIF1<0,舍去當SKIPIF1<0時,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當SKIPIF1<0時,SKIPIF1<0的極小值為SKIPIF1<0.所以SKIPIF1<0.(2)由(1)知,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以不妨設SKIPIF1<0.下面先證SKIPIF1<0.即證SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,又因為區(qū)間SKIPIF1<0上,SKIPIF1<0單調(diào)遞減,只要證SKIPIF1<0,又因為SKIPIF1<0,只要證SKIPIF1<0,只要證SKIPIF1<0.設SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0.下面證SKIPIF1<0.設SKIPIF1<0,因為SKIPIF1<0,在區(qū)間SKIPIF1<0上,SKIPIF1<0;在區(qū)間SKIPIF1<0上,SKIPIF1<0.設SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.設SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【點睛】極值點偏移問題中(極值點為SKIPIF1<0),證明SKIPIF1<0或SKIPIF1<0的方法:①構(gòu)造SKIPIF1<0,②確定SKIPIF1<0的單調(diào)性,③結(jié)合特殊值得到SKIPIF1<0或SKIPIF1<0,再利用SKIPIF1<0,得到SKIPIF1<0與SKIPIF1<0的大小關系,④利用SKIPIF1<0的單調(diào)性即可得到SKIPIF1<0或SKIPIF1<0.5.(2022·云南·昆明一中模擬預測(理))已知函數(shù)SKIPIF1<0,且SKIPIF1<0恒成立.(1)求SKIPIF1<0的最大值;(2)當SKIPIF1<0取得最大值時,設SKIPIF1<0,若SKIPIF1<0有兩個零點為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)先求導得SKIPIF1<0,對SKIPIF1<0進行分類討論,求出SKIPIF1<0,即SKIPIF1<0,進而求得SKIPIF1<0的最大值;(2)由(1)得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0整理得SKIPIF1<0,SKIPIF1<0,作差變形得SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,代換SKIPIF1<0得SKIPIF1<0,構(gòu)造SKIPIF1<0,利用導數(shù)可證不等式恒成立.【詳解】(1)由題意得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單增,當SKIPIF1<0時,SKIPIF1<0,此時顯然不成立;當SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單減,在SKIPIF1<0上單增,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0;(2)由(1)式可知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0有兩個零點為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,要證不等式SKIPIF1<0恒成立,等價于SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,得證.6.(2022·新疆·高三期中(理))已知函數(shù)SKIPIF1<0的兩個不同極值點分別為SKIPIF1<0,SKIPIF1<0(SKIPIF1<0).(1)求實數(shù)SKIPIF1<0的取值范圍;(2)證明:SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)).【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)把函數(shù)SKIPIF1<0有兩個不同極值點SKIPIF1<0,SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0有兩個不同的實數(shù)根,令SKIPIF1<0,結(jié)合其導數(shù)分析SKIPIF1<0值域情況,從而得到實數(shù)SKIPIF1<0的取值范圍;(2)由題意可知SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個根,從而有SKIPIF1<0,變形可得:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,再利用分析法即可證明SKIPIF1<0.【詳解】(1)解:因為SKIPIF1<0有兩個不同極值點SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0有兩個不同的根SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0得SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.因為當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.(2)證明:由(1)可知SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個根,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0成立,故SKIPIF1<0成立.7.(2022·貴州·貴陽一中高三階段練習(理))已知函數(shù)SKIPIF1<0.(1)試判斷函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有兩個不同的實數(shù)解SKIPIF1<0,試說明SKIPIF1<0.【答案】(1)答案見解析;(2)證明見解析.【分析】(1)由導數(shù)法判斷單調(diào)性即可;(2)原方程化簡為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則要證SKIPIF1<0結(jié)合對數(shù)運算法則,等價于證SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,只要證明SKIPIF1<0,SKIPIF1<0時恒成立即可,最后由導數(shù)法證明即可.【詳解】(1)由題可知SKIPIF1<0的定義域是SKIPIF1<0,SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.綜上:當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)證明:因為SKIPIF1<0有兩個不同實數(shù)解SKIPIF1<0,即SKIPIF1<0有兩個不同實數(shù)解SKIPIF1<0,又由于SKIPIF1<0,故不妨設令SKIPIF1<0,且有SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以只要證明SKIPIF1<0,SKIPIF1<0時恒成立,令SKIPIF1<0,SKIPIF1<0,由于已知SKIPIF1<0,∴SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上遞增,∴SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0恒成立,從而證明SKIPIF1<0.【點睛】要證SKIPIF1<0,關鍵是利用條件將不等式變形,將SKIPIF1<0作為整體換元,使原不等式變成只含一個變量的不等式恒成立問題.本題SKIPIF1<0,故可結(jié)合對數(shù)運算性質(zhì)進行變形,最后不等式等價于證SKIPIF1<08.(2022·全國·高三階段練習(文))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).(1)若函數(shù)SKIPIF1<0的最小值為2,求SKIPIF1<0的值;(2)在(1)的條件下,若關于SKIPIF1<0的方程SKIPIF1<0有兩個不同的實數(shù)根SKIPIF1<0,且SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)由題知SKIPIF1<0,再根據(jù)SKIPIF1<0和SKIPIF1<0時的情況求解函數(shù)最小值即可得答案;(2)方法一:根據(jù)題意得SKIPIF1<0,進而令SKIPIF1<0得SKIPIF1<0,再令SKIPIF1<0,求函數(shù)最小值即可;方法二:由題知方程SKIPIF1<0有兩個不同的實數(shù)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,進而根據(jù)極值點偏移問題求解即可.【詳解】(1)解:因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.當SKIPIF1<0時,有SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0不存在最小值;所以SKIPIF1<0不合題意,故SKIPIF1<0.當SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,解得SKIPIF1<0.所以,SKIPIF1<0的值為SKIPIF1<0(2)解:方法一:由(1)知,SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0為方程SKIPIF1<0的兩個不同的實數(shù)根,所以SKIPIF1<0①;SKIPIF1<0②.①-②得:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,有SKIPIF1<0,所以SKIPIF1<0,從而得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,得證.方法二:由(1)知,SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0為方程SKIPIF1<0的兩個不同的實數(shù)根,所以SKIPIF1<0,即方程SKIPIF1<0有兩個不同的實數(shù)根SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因為SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.即SKIPIF1<0,得證.【點睛】關鍵點點睛:本題第二問解題的關鍵在于由SKIPIF1<0,結(jié)合SKIPIF1<0得到SKIPIF1<0,再根據(jù)函數(shù)SKIPIF1<0的性質(zhì)得SKIPIF1<0,進而證明結(jié)論;9.(2022·河南·高三期中(理))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0,且SKIPIF1<0,使得SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)證明見解析【分析】(1)利用導函數(shù)的幾何意義求解即可;(2)由(1)得SKIPIF1<0,設SKIPIF1<0,SKIPIF1<0,利用導函數(shù)的幾何意義可得SKIPIF1<0,從而可得SKIPIF1<0;設SKIPIF1<0,SKIPIF1<0,利用導函數(shù)的幾何意義可得SKIPIF1<0,從而可得SKIPIF1<0,兩式聯(lián)立即可求解.【詳解】(1)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由(Ⅰ)可知SKIPIF1<0,設SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論