版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題02函數(shù)的概念和性質(zhì)(講)真題體驗(yàn)感悟高考1.(2022·天津·高考真題)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用冪函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法可得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關(guān)系.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0.故答案為:C.2.(2021·全國(guó)·高考真題(理))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】通過SKIPIF1<0是奇函數(shù)和SKIPIF1<0是偶函數(shù)條件,可以確定出函數(shù)解析式SKIPIF1<0,進(jìn)而利用定義或周期性結(jié)論,即可得到答案.【詳解】因?yàn)镾KIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路一:從定義入手.SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.思路二:從周期性入手由兩個(gè)對(duì)稱性可知,函數(shù)SKIPIF1<0的周期SKIPIF1<0.所以SKIPIF1<0.故選:D.3.(2022·全國(guó)·高考真題)已知函數(shù)SKIPIF1<0的定義域?yàn)镽,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】A【解析】【分析】根據(jù)題意賦值即可知函數(shù)SKIPIF1<0的一個(gè)周期為SKIPIF1<0,求出函數(shù)一個(gè)周期中的SKIPIF1<0的值,即可解出.【詳解】因?yàn)镾KIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0得,SKIPIF1<0,即有SKIPIF1<0,從而可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的一個(gè)周期為SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以一個(gè)周期內(nèi)的SKIPIF1<0.由于22除以6余4,所以SKIPIF1<0.故選:A.4.(2022·全國(guó)·高考真題(文))若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【答案】
SKIPIF1<0;
SKIPIF1<0.【分析】根據(jù)奇函數(shù)的定義即可求出.【詳解】[方法一]:奇函數(shù)定義域的對(duì)稱性若SKIPIF1<0,則SKIPIF1<0的定義域?yàn)镾KIPIF1<0,不關(guān)于原點(diǎn)對(duì)稱SKIPIF1<0若奇函數(shù)的SKIPIF1<0有意義,則SKIPIF1<0且SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),定義域關(guān)于原點(diǎn)對(duì)稱,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:函數(shù)的奇偶性求參SKIPIF1<0SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0[方法三]:因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),所以其定義域關(guān)于原點(diǎn)對(duì)稱.由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,即函數(shù)的定義域?yàn)镾KIPIF1<0,再由SKIPIF1<0可得,SKIPIF1<0.即SKIPIF1<0,在定義域內(nèi)滿足SKIPIF1<0,符合題意.故答案為:SKIPIF1<0;SKIPIF1<0.5.(2015·福建·高考真題(理))若函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的值域是SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【解析】【詳解】試題分析:由于函數(shù)SKIPIF1<0的值域是SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍SKIPIF1<0.總結(jié)規(guī)律預(yù)測(cè)考向(一)規(guī)律與預(yù)測(cè)1.高考對(duì)此部分內(nèi)容的命題多集中于函數(shù)的概念、函數(shù)的性質(zhì)及分段函數(shù)等,主要考查求函數(shù)的定義域、分段函數(shù)的函數(shù)值的求解或分段函數(shù)中參數(shù)的求解及函數(shù)圖象的識(shí)別.難度屬中等及以上.2.以基本初等函數(shù)的圖象、性質(zhì)為載體,利用函數(shù)性質(zhì)比較大小是常見題型.3.函數(shù)的對(duì)稱性、奇偶性、周期性及單調(diào)性是函數(shù)的四大性質(zhì),在高考中常常將它們綜合在一起命題,考查性質(zhì)的綜合、靈活地應(yīng)用能力.4.此部分內(nèi)容多以選擇題、填空題形式出現(xiàn),函數(shù)零點(diǎn)的個(gè)數(shù)判斷及參數(shù)范圍是高考的熱點(diǎn),有時(shí)在壓軸題的位置,多與導(dǎo)數(shù)、不等式、創(chuàng)新性問題結(jié)合命題.(二)本專題考向展示考點(diǎn)突破典例分析考向一函數(shù)的概念與表示【核心知識(shí)】函數(shù)的定義域求具體函數(shù)的定義域時(shí),注意要使函數(shù)有意義.復(fù)合函數(shù)的定義域(1)若f(x)的定義域?yàn)閇m,n],則在f(g(x))中,m≤g(x)≤n,從中解得x的范圍即為f(g(x))的定義域.(2)若f(g(x))的定義域?yàn)閇m,n],則由m≤x≤n確定的g(x)的范圍即為f(x)的定義域.二.分段函數(shù)分段函數(shù)的定義域等于各段函數(shù)的定義域的并集,值域等于各段函數(shù)值域的并集.【典例分析】典例1.(2022·浙江·高考真題)已知SKIPIF1<0,則SKIPIF1<0(
)A.25 B.5 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)指數(shù)式與對(duì)數(shù)式的互化,冪的運(yùn)算性質(zhì)以及對(duì)數(shù)的運(yùn)算性質(zhì)即可解出.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C.典例2.(2022·北京·高考真題)函數(shù)SKIPIF1<0的定義域是_________.【答案】SKIPIF1<0【解析】【分析】根據(jù)偶次方根的被開方數(shù)非負(fù)、分母不為零得到方程組,解得即可;【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,故函數(shù)的定義域?yàn)镾KIPIF1<0;故答案為:SKIPIF1<0典例3.(2022·天津市瑞景中學(xué)高三期中)已知函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)自變量所在的范圍代入解析式求解即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0.故選:B.典例4.(浙江·高考真題(理))已知函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的最小值是.【答案】,.【解析】【詳解】SKIPIF1<0,若SKIPIF1<0:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立;若SKIPIF1<0:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,故可知SKIPIF1<0.【特別提醒】對(duì)于分段函數(shù)的求值(解不等式)問題,必須依據(jù)條件準(zhǔn)確找出利用哪一段求解.考向二單調(diào)性與奇偶性【核心知識(shí)】1.函數(shù)的奇偶性(1)定義:若函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,則有:f(x)是偶函數(shù)?f(-x)=f(x)=f(|x|);f(x)是奇函數(shù)?f(-x)=-f(x).(2)判斷方法:定義法、圖象法、奇偶函數(shù)性質(zhì)法(如奇函數(shù)×奇函數(shù)是偶函數(shù)).2.函數(shù)單調(diào)性判斷方法:定義法、圖象法、導(dǎo)數(shù)法.復(fù)合函數(shù)的單調(diào)性牢記“同增異減”.3.奇函數(shù)在其圖象關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性,偶函數(shù)在其圖象關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性,即“奇同偶反”.【典例分析】典例5.(2021·全國(guó)·高考真題(理))設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】分別求出選項(xiàng)的函數(shù)解析式,再利用奇函數(shù)的定義即可.【詳解】由題意可得SKIPIF1<0,對(duì)于A,SKIPIF1<0不是奇函數(shù);對(duì)于B,SKIPIF1<0是奇函數(shù);對(duì)于C,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對(duì)稱,不是奇函數(shù);對(duì)于D,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對(duì)稱,不是奇函數(shù).故選:B典例6.(2019·全國(guó)·高考真題(理))設(shè)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞減,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由已知函數(shù)為偶函數(shù),把SKIPIF1<0,轉(zhuǎn)化為同一個(gè)單調(diào)區(qū)間上,再比較大小.【詳解】SKIPIF1<0是R的偶函數(shù),SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0在(0,+∞)單調(diào)遞減,∴SKIPIF1<0,SKIPIF1<0,故選C.典例7.(2020·海南·高考真題)若定義在SKIPIF1<0的奇函數(shù)f(x)在SKIPIF1<0單調(diào)遞減,且f(2)=0,則滿足SKIPIF1<0的x的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】首先根據(jù)函數(shù)奇偶性與單調(diào)性,得到函數(shù)SKIPIF1<0在相應(yīng)區(qū)間上的符號(hào),再根據(jù)兩個(gè)數(shù)的乘積大于等于零,分類轉(zhuǎn)化為對(duì)應(yīng)自變量不等式,最后求并集得結(jié)果.【詳解】因?yàn)槎x在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也是單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以由SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,所以滿足SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D.典例8.(2019·全國(guó)·高考真題(理))已知SKIPIF1<0是奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0__________.【答案】-3【解析】【分析】當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0代入條件即可得解.【詳解】因?yàn)镾KIPIF1<0是奇函數(shù),且當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0.又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,兩邊取以SKIPIF1<0為底的對(duì)數(shù)得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.【規(guī)律方法】1.研究函數(shù)問題務(wù)必遵循“定義域優(yōu)先”的原則.2.利用函數(shù)的奇偶性和周期性可以把不在已知區(qū)間上的問題轉(zhuǎn)化到已知區(qū)間上求解.考向三基本初等函數(shù)的性質(zhì)及其應(yīng)用【核心知識(shí)】一.指數(shù)函數(shù)y=ax(a>0,a≠1)與對(duì)數(shù)函數(shù)y=logax(a>0,a≠1)互為反函數(shù),其圖象關(guān)于y=x對(duì)稱,它們的圖象和性質(zhì)分0<a<1,a>1兩種情況,著重關(guān)注兩函數(shù)圖象的異同.二.冪函數(shù)y=xα的圖象和性質(zhì),主要掌握α=1,2,3,SKIPIF1<0,-1五種情況.典例8.(2020·海南·高考真題)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先求出SKIPIF1<0的定義域,然后求出SKIPIF1<0的單調(diào)遞增區(qū)間即可.【詳解】由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0故選:D典例9.(2022·福建·福州三中高三階段練習(xí))若SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先得到SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,然后再逐個(gè)分析判斷即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0和SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以由SKIPIF1<0,得SKIPIF1<0,對(duì)于A,當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0,而SKIPIF1<0,所以A錯(cuò)誤,對(duì)于B,當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0,而SKIPIF1<0,所以B錯(cuò)誤,對(duì)于C,當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0,而SKIPIF1<0,所以C錯(cuò)誤,對(duì)于D,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以D正確,故選:D典例10.【多選題】(2022·重慶·高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】根據(jù)指數(shù)函數(shù),對(duì)數(shù)函數(shù),冪函數(shù)的單調(diào)性結(jié)合不等式的性質(zhì)逐項(xiàng)分析即得.【詳解】A選項(xiàng),∵SKIPIF1<0,∴SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,故A錯(cuò)誤;B選項(xiàng),由SKIPIF1<0可知函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,故SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故B正確;C選項(xiàng),由題可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故C正確;D選項(xiàng),函數(shù)SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,故SKIPIF1<0,故D錯(cuò)誤.故選:BC.典例11.(2022·重慶·高三階段練習(xí))已知SKIPIF1<0且SKIPIF1<0,函數(shù)SKIPIF1<0有最小值,則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)可得當(dāng)SKIPIF1<0時(shí)函數(shù)無最小值,不符合題意;當(dāng)SKIPIF1<0時(shí),利用基本不等式求出SKIPIF1<0在SKIPIF1<0上的最小值SKIPIF1<0,利用對(duì)數(shù)函數(shù)的性質(zhì)求出SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,列出不等式SKIPIF1<0,解之即可.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0x在(0,a)上單調(diào)遞增,所以值域?yàn)椋?∞,1),故函數(shù)f(x)無最小值,不符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0上有SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0SKIPIF1<0x在(0,a)上單調(diào)遞減,所以值域?yàn)椋?,+∞),故函數(shù)f(x)有最小值只需SKIPIF1<0,即SKIPIF1<0,所SKIPIF1<0.故答案為:SKIPIF1<0.【規(guī)律方法】1.三招破解指數(shù)、對(duì)數(shù)、冪函數(shù)值的大小比較(1)底數(shù)相同,指數(shù)不同的冪用指數(shù)函數(shù)的單調(diào)性進(jìn)行比較;(2)底數(shù)相同,真數(shù)不同的對(duì)數(shù)值用對(duì)數(shù)函數(shù)的單調(diào)性比較;(3)底數(shù)不同、指數(shù)也不同,或底數(shù)不同、真數(shù)也不同的兩個(gè)數(shù),常引入中間量或結(jié)合圖象比較大小.2.[特別提醒](1)對(duì)于含參數(shù)的指數(shù)、對(duì)數(shù)問題,在應(yīng)用單調(diào)性時(shí),要注意對(duì)底數(shù)進(jìn)行討論;(2)解決對(duì)數(shù)問題時(shí),首先要考慮定義域,其次再利用性質(zhì)求解.考向四周期性與對(duì)稱性【核心知識(shí)】1.周期性常用的幾個(gè)結(jié)論如下:(1)SKIPIF1<0對(duì)SKIPIF1<0時(shí),若SKIPIF1<0或SKIPIF1<0(SKIPIF1<0)恒成立,則SKIPIF1<0是SKIPIF1<0的一個(gè)周期;(2)SKIPIF1<0對(duì)SKIPIF1<0時(shí),若SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(SKIPIF1<0)恒成立,則SKIPIF1<0是SKIPIF1<0的一個(gè)周期;(3)若SKIPIF1<0為偶函數(shù),其圖象又關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0是以SKIPIF1<0為一個(gè)周期的周期函數(shù);(4)若SKIPIF1<0為奇函數(shù),其圖象又關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0是以SKIPIF1<0為一個(gè)周期的周期函數(shù).2.函數(shù)的對(duì)稱性:若SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0中心對(duì)稱;若SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱.【典例分析】典例12.(2021·全國(guó)·高考真題)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】推導(dǎo)出函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),由已知條件得出SKIPIF1<0,結(jié)合已知條件可得出結(jié)論.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,可得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,故SKIPIF1<0,其它三個(gè)選項(xiàng)未知.故選:B.典例13.(2022·全國(guó)·高考真題(理))已知函數(shù)SKIPIF1<0的定義域均為R,且SKIPIF1<0.若SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)對(duì)稱性和已知條件得到SKIPIF1<0,從而得到SKIPIF1<0,SKIPIF1<0,然后根據(jù)條件得到SKIPIF1<0的值,再由題意得到SKIPIF1<0從而得到SKIPIF1<0的值即可求解.【詳解】因?yàn)镾KIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,代入得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,聯(lián)立得,SKIPIF1<0,所以SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镽,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.故選:D典例14.(2022·江蘇·南京市第一中學(xué)高三期中)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù)且SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0____.【答案】8【分析】根據(jù)已知條件可得SKIPIF1<0的對(duì)稱中心SKIPIF1<0,對(duì)稱軸SKIPIF1<0,可得SKIPIF1<0為SKIPIF1<0的一個(gè)周期,由SKIPIF1<0、SKIPIF1<0以及SKIPIF1<0列關(guān)于SKIPIF1<0的方程組,進(jìn)而可得SKIPIF1<0時(shí),SKIPIF1<0的解析式,再利用周期性即可求解.【詳解】解:因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,根據(jù)條件可知SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0的一個(gè)周期,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.【總結(jié)提升】1.函數(shù)的周期性常常通過函數(shù)的奇偶性得到,函數(shù)的奇偶性體現(xiàn)的是一種對(duì)稱關(guān)系,而函數(shù)的單調(diào)性體現(xiàn)的是函數(shù)值隨自變量變化而變化的規(guī)律.因此在解題時(shí),往往需要借助函數(shù)的奇偶性和周期性來確定函數(shù)在另一個(gè)區(qū)間上的單調(diào)性,即實(shí)現(xiàn)區(qū)間的轉(zhuǎn)換,再利用單調(diào)性解決相關(guān)問題.2.求函數(shù)周期的方法求一般函數(shù)周期常用遞推法和換元法,形如y=Asin(ωx+φ),用公式T=計(jì)算.遞推法:若f(x+a)=-f(x),則f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以周期T=2a.換元法:若f(x+a)=f(x-a),令x-a=t,x=t+a,則f(t)=f(t+2a),所以周期T=2a.3.判斷函數(shù)的周期只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T,函數(shù)的周期性常與函數(shù)的其他性質(zhì)綜合命題.4.根據(jù)函數(shù)的周期性,可以由函數(shù)局部的性質(zhì)得到函數(shù)的整體性質(zhì),在解決具體問題時(shí),要注意結(jié)論:若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期.考向五函數(shù)的零點(diǎn)【核心知識(shí)】1.函數(shù)的零點(diǎn)及其與方程根的關(guān)系對(duì)于函數(shù)f(x),使f(x)=0的實(shí)數(shù)x叫做函數(shù)f(x)的零點(diǎn).函數(shù)F(x)=f(x)-g(x)的零點(diǎn)就是方程f(x)=g(x)的根,即函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象交點(diǎn)的橫坐標(biāo).2.零點(diǎn)存在性定理如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根.典例15.(2022·北京·北師大實(shí)驗(yàn)中學(xué)高三期中)設(shè)函數(shù)SKIPIF1<0則其零點(diǎn)所在的區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】分別計(jì)算SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)零點(diǎn)存在定理結(jié)合函數(shù)的單調(diào)性,得到答案.【詳解】函數(shù)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合零點(diǎn)存在定理,可知SKIPIF1<0的零點(diǎn)所在區(qū)間為SKIPIF1<0.故選:B.典例16.【多選題】(2022·湖北·仙桃市田家炳實(shí)驗(yàn)高級(jí)中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),對(duì)SKIPIF1<0都有SKIPIF1<0成立,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),有SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0B.SKIPIF1<0在SKIPIF1<0上有5個(gè)零點(diǎn)C.SKIPIF1<0D.直線SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一條對(duì)稱軸【答案】ABC【分析】根據(jù)SKIPIF1<0和奇函數(shù)的結(jié)論:求出SKIPIF1<0和函數(shù)的周期,進(jìn)而判斷出ABC正確;舉反例判斷出D正確性.【詳解】由題意,令x=0代入SKIPIF1<0得,SKIPIF1<0,∵函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),∴SKIPIF1<0,則f(1)=0,故選項(xiàng)A正確;又∵對(duì)?x∈R都有SKIPIF1<0成立,∴f(x)=f(x+2),則函數(shù)SKIPIF1<0是以2為周期的周期函數(shù),又由SKIPIF1<0得SKIPIF1<0∴f(2022)=f(2×1011+0)=f(0)=0故選項(xiàng)C正確;又f(?2)=f(0)=f(2)=0,故在SKIPIF1<0上,SKIPIF1<0均為SKIPIF1<0的零點(diǎn)∵當(dāng)x∈(0,1]且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民航機(jī)場(chǎng)消毒防疫與旅客安全合同3篇
- 進(jìn)度計(jì)劃編制課程設(shè)計(jì)
- 三月三活動(dòng)方案例文(3篇)
- 線下商務(wù)談判課程設(shè)計(jì)
- 人事行政專員工作職責(zé)模版(2篇)
- 水泥筒倉(cāng)及風(fēng)送設(shè)備安全操作規(guī)程(4篇)
- 二零二五年度國(guó)際貿(mào)易代理供應(yīng)鏈管理合同3篇
- 2025年度安全生產(chǎn)的工作總結(jié)例文(3篇)
- 2025年蘇科版九年級(jí)物理上冊(cè)階段測(cè)試試卷
- 2025年滬教版高一物理下冊(cè)階段測(cè)試試卷
- 2023學(xué)年杭州市十四中高二數(shù)學(xué)(上)期末考試卷附答案解析
- GB/T 8607-2024專用小麥粉
- 新增值稅法學(xué)習(xí)課件
- 如何反饋與指導(dǎo)-培訓(xùn)課件
- 江蘇省高中名校2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析
- 2024年上海市16區(qū)高考英語(yǔ)一模試卷聽力部分匯編(附14區(qū)聽力音頻)含答案與文本
- 江蘇省南通市2023-2024學(xué)年高二上學(xué)期期末考試物理試題(含答案)
- 2024年房屋租賃補(bǔ)充協(xié)議參考模板(四篇)
- 老年病護(hù)理學(xué)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 《旅游職業(yè)禮儀》高職旅游專業(yè)全套教學(xué)課件
- 2025高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):阿基米德三角形(解析版)
評(píng)論
0/150
提交評(píng)論