版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆天津市靜海區(qū)第四中學(xué)高考沖刺模擬數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.2.已知函數(shù),若關(guān)于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.3.將4名大學(xué)生分配到3個鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種4.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.325.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關(guān)于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.6.已知向量,,若,則()A. B. C. D.7.已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.8.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.9.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.10.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.11.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.12.設(shè)函數(shù)若關(guān)于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.14.設(shè),滿足約束條件,若的最大值是10,則________.15.平面向量,,(R),且與的夾角等于與的夾角,則.16.已知向量,,若向量與向量平行,則實數(shù)___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時x的取值范圍;(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.18.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對于任意的,都存在,使得成立,求實數(shù)的取值范圍.19.(12分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標(biāo);若不存在,請說明理由.20.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時,,求的取值范圍.21.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.22.(10分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計算最值,即可得出答案.2、C【解析】
求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當(dāng)時,,當(dāng),,且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點個數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點值符號,進(jìn)而判斷函數(shù)在該區(qū)間上零點的個數(shù).3、B【解析】
把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎(chǔ)題.4、B【解析】
根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.5、C【解析】
易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.6、A【解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標(biāo)運算,屬于基礎(chǔ)題.7、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復(fù)數(shù),則,所以A選項不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運算等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想.8、D【解析】
設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學(xué)生對這些知識的理解掌握水平.9、C【解析】
利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價轉(zhuǎn)化.10、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.11、B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)12、B【解析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.14、【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.15、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標(biāo)運算與向量夾角16、【解析】
由題可得,因為向量與向量平行,所以,解得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)先根據(jù)向量的數(shù)量積的運算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據(jù)正弦函數(shù)的性質(zhì)即可求出答案;(2)先求出C的大小,再根據(jù)余弦定理和基本不等式,即可求出,根據(jù)三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時,,取最小值,所以,所求的取值集合是;(2)由,得,因為,所以,所以,.在中,由余弦定理,得,即,當(dāng)且僅當(dāng)時取等號,所以的面積,因此的面積的最大值為.【點睛】本題考查了向量的數(shù)量積的運算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.18、(1)(2)【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結(jié)合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數(shù)最值問題,考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想.19、(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設(shè)軸上存在點,是以為直角頂點的等腰直角三角形,設(shè),,線段的中點為,根據(jù)韋達(dá)定理求出點的坐標(biāo),再根據(jù),,即可求出的值,可得點的坐標(biāo).【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設(shè)軸上存在點,是以為直角頂點的等腰直角三角形設(shè),,線段的中點為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當(dāng)時,點滿足題意;當(dāng)時,點滿足題意故軸上存在點,使得是以為直角頂點的等腰直角三角形【點睛】本題考查了橢圓的方程,直線和橢圓的位置關(guān)系,斜率公式,考查了運算能力和轉(zhuǎn)化能力,屬于中檔題.20、(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時,恒成立,②當(dāng)時,轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當(dāng)時,恒成立,所以.②當(dāng)時,可化為,設(shè),則,所以當(dāng)時,,所以.綜上,的取值范圍是.21、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實數(shù)a的取值范圍為試題解析:(I)當(dāng)時,化為,當(dāng)時,不等式化為,無解;當(dāng)時,不等式化為,解得;當(dāng)時,不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為22、(1)(2)【解析】
(1)當(dāng)時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人住宅小區(qū)地下車庫車位買賣協(xié)議范本2篇
- 2025年度個人帶車庫帶儲藏室公寓買賣協(xié)議
- 2025年度個人二手挖掘機買賣合同范本全新升級版2篇
- 2025年全球及中國智能安防巡檢機器人行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球胃電刺激裝置行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國可調(diào)鎖骨矯正器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2024年軍隊文職人員招聘考試題庫
- 2025年度頁巖磚生產(chǎn)廢棄物資源化利用技術(shù)研發(fā)合同4篇
- 2025年度老舊小區(qū)改造工程維修管理服務(wù)合同范本2篇
- 二零二五年度櫥柜品牌授權(quán)生產(chǎn)與銷售代理合同3篇
- 醫(yī)保政策與健康管理培訓(xùn)計劃
- 無人化農(nóng)場項目可行性研究報告
- 《如何存款最合算》課件
- 社區(qū)團(tuán)支部工作計劃
- 拖欠工程款上訪信范文
- 2024屆上海市金山區(qū)高三下學(xué)期二模英語試題(原卷版)
- 學(xué)生春節(jié)安全教育
- 《wifi協(xié)議文庫》課件
- 《好東西》:女作者電影的話語建構(gòu)與烏托邦想象
- 教培行業(yè)研究系列(七):出國考培的再研究供需變化的新趨勢
- GB/T 44895-2024市場和社會調(diào)查調(diào)查問卷編制指南
評論
0/150
提交評論