版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省遵義第四中學2025屆高三最后一卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.2.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.3.雙曲線的漸近線方程為()A. B.C. D.4.已知為虛數(shù)單位,實數(shù)滿足,則()A.1 B. C. D.5.已知向量與的夾角為,,,則()A. B.0 C.0或 D.6.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.7.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.8.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.49.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個10.在復平面內(nèi),復數(shù)(為虛數(shù)單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.12.在中,為中點,且,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出下列四個命題,其中正確命題的序號是_____.(寫出所有正確命題的序號)因為所以不是函數(shù)的周期;對于定義在上的函數(shù)若則函數(shù)不是偶函數(shù);“”是“”成立的充分必要條件;若實數(shù)滿足則.14.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.15.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.16.設(shè)為偶函數(shù),且當時,;當時,.關(guān)于函數(shù)的零點,有下列三個命題:①當時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.18.(12分)已知函數(shù),.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當時,的最大值為,求證:.19.(12分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.20.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.21.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.22.(10分)設(shè)前項積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項公式;(Ⅱ)設(shè)是數(shù)列的前項和,且,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據(jù)求出的坐標,求出邊所在直線的方程,設(shè),利用坐標表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設(shè),解得,所在直線的方程為因為點在邊所在直線上,故設(shè)當時故選:【點睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標系,屬于中檔題.2、A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結(jié)合弦長公式得,解得或,故選A.3、A【解析】
將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質(zhì)的應用.4、D【解析】,則故選D.5、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎(chǔ)題.6、D【解析】
依次將選項中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調(diào),故A不正確;當時,在上單調(diào)遞減,故B不正確;當時,在上不單調(diào),故C不正確;當時,在上單調(diào)遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導公式的應用,是一道容易題.7、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.8、C【解析】
由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.9、C【解析】
計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.10、C【解析】
化簡復數(shù)為、的形式,可以確定對應的點位于的象限.【詳解】解:復數(shù)故復數(shù)對應的坐標為位于第三象限故選:.【點睛】本題考查復數(shù)代數(shù)形式的運算,復數(shù)和復平面內(nèi)點的對應關(guān)系,屬于基礎(chǔ)題.11、A【解析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計算能力,屬于中檔題.12、B【解析】
選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對①,根據(jù)周期的定義判定即可.對②,根據(jù)偶函數(shù)滿足的性質(zhì)判定即可.對③,舉出反例判定即可.對④,求解不等式再判定即可.【詳解】解:因為當時,所以由周期函數(shù)的定義知不是函數(shù)的周期,故正確;對于定義在上的函數(shù),若,由偶函數(shù)的定義知函數(shù)不是偶函數(shù),故正確;當時不滿足則“”不是“”成立的充分不必要條件,故錯誤;若實數(shù)滿足則所以成立,故正確.正確命題的序號是.故答案為:.【點睛】本題主要考查了命題真假的判定,屬于基礎(chǔ)題.14、(或?qū)懗?【解析】試題分析:設(shè),取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間15、【解析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結(jié)合思想進行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.16、①②③【解析】
根據(jù)偶函數(shù)的圖象關(guān)于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、.【解析】試題分析:,所以.試題解析:B.因為,所以.18、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調(diào)遞增,所以在上的最小值是(ii)當,即時,由的單調(diào)性可得在上的最小值是(iii)當,即時,在上單調(diào)遞減,在上的最小值是(Ⅲ)當時,令,則是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數(shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數(shù),所以(1)當時,,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當時,令,即,所以令,即,所以(i)當,即時,在上單調(diào)遞增,所以在上的最小值是(ii)當,即時,在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當,即時,在上單調(diào)遞減,所以在上的最小值是綜上所述,當時,在上的最小值是當時,在上的最小值是當時,在上的最小值是(Ⅲ)因為函數(shù),所以所以當時,令,所以是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即所以當時,;當時,即當時,;當時,所以在上單調(diào)遞增,在上單調(diào)遞減.所以當時,取得最大值是因為,所以因為,所以所以19、【解析】試題分析:先將問題“存在實數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數(shù)的取值范圍是.考點:柯西不等式即運用和轉(zhuǎn)化與化歸的數(shù)學思想的運用.20、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】
(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.21、(1)2;(2).【解析】
(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當且僅當且即時,.(2)由(1)知,,對任意,都有,∴,即.①當時,有,解得;②當,時,有,解得;③當時,有,解得;綜上,,∴實數(shù)的取值范圍是.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版再婚夫妻離婚規(guī)定3篇
- 梅河口康美職業(yè)技術(shù)學院《數(shù)學課程與教學》2023-2024學年第一學期期末試卷
- 眉山藥科職業(yè)學院《擴聲技術(shù)》2023-2024學年第一學期期末試卷
- 2024年物流運輸服務(wù)合同標的詳細描述
- 馬鞍山學院《形態(tài)學整合實驗》2023-2024學年第一學期期末試卷
- 2024年勞動合同樣本新編3篇
- 2024年標準化電腦與辦公設(shè)備采購協(xié)議范例版B版
- 漯河醫(yī)學高等專科學?!堵殬I(yè)教育經(jīng)濟學》2023-2024學年第一學期期末試卷
- 漯河食品職業(yè)學院《植物營養(yǎng)診斷與施肥(實驗)》2023-2024學年第一學期期末試卷
- 2024年創(chuàng)新型門面房租賃合作協(xié)議6篇
- NB∕T 13007-2021 生物柴油(BD100)原料 廢棄油脂
- GB/T 20624.2-2006色漆和清漆快速變形(耐沖擊性)試驗第2部分:落錘試驗(小面積沖頭)
- GB/T 12771-2019流體輸送用不銹鋼焊接鋼管
- GB/T 10125-2012人造氣氛腐蝕試驗鹽霧試驗
- 維修電工-基于7812穩(wěn)壓電路(中級)-動畫版
- PV測試方法簡介-IV
- 病理學實驗切片考試圖片授課課件
- 2021離婚協(xié)議書電子版免費
- 國家開放大學《組織行為學》章節(jié)測試參考答案
- 電子課件機械基礎(chǔ)(第六版)完全版
- 臨沂十二五城市規(guī)劃研究專題課件
評論
0/150
提交評論