版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省隆回縣2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù)、滿(mǎn)足不等式組,則的最大值為()A. B. C. D.2.已知復(fù)數(shù)滿(mǎn)足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.3.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.24.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.5.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.6.定義域?yàn)镽的偶函數(shù)滿(mǎn)足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.7.若復(fù)數(shù),則()A. B. C. D.208.集合,,則()A. B. C. D.9.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.410.如圖1,《九章算術(shù)》中記載了一個(gè)“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去本三尺,問(wèn)折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問(wèn)折斷處離地面的高為()尺.A. B. C. D.11.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長(zhǎng)度,若,,則()A. B.C.6 D.12.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿(mǎn)足:點(diǎn)在直線上,若使、、構(gòu)成等比數(shù)列,則______14.一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_(kāi)________.15.某班有學(xué)生52人,現(xiàn)將所有學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣方法,抽取一個(gè)容量為4的樣本,已知5號(hào)、31號(hào)、44號(hào)學(xué)生在樣本中,則樣本中還有一個(gè)學(xué)生的編號(hào)是__________.16.在中,已知,,是邊的垂直平分線上的一點(diǎn),則__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿(mǎn)足對(duì)任意都有,其前項(xiàng)和為,且是與的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列滿(mǎn)足,,設(shè)數(shù)列的前項(xiàng)和為,求大于的最小的正整數(shù)的值.18.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.19.(12分)如圖,平面分別是上的動(dòng)點(diǎn),且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時(shí),求平面與平面所成的二面角的余弦值.20.(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時(shí),求的面積;(2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值.21.(12分)的內(nèi)角的對(duì)邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.22.(10分)在平面直角坐標(biāo)系中,為直線上動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線:的兩條切線,,切點(diǎn)分別為,,為的中點(diǎn).(1)證明:軸;(2)直線是否恒過(guò)定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
畫(huà)出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫(huà)出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過(guò)點(diǎn)A時(shí),此時(shí)直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【點(diǎn)睛】本題主要考查簡(jiǎn)單線性規(guī)劃求解目標(biāo)函數(shù)的最值問(wèn)題.其中解答中正確畫(huà)出不等式組表示的可行域,利用“一畫(huà)、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)z,復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長(zhǎng)公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算,模長(zhǎng)公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.3、D【解析】
由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.4、C【解析】
轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過(guò)原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過(guò)原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.5、D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點(diǎn)睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.6、B【解析】
由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫(huà)出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿(mǎn)足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過(guò)程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問(wèn)題,屬于中檔題.7、B【解析】
化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.8、A【解析】
計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.9、D【解析】
圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開(kāi)計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿(mǎn)足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.10、B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.11、D【解析】
先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.12、C【解析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿(mǎn)足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長(zhǎng)的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】
根據(jù)點(diǎn)在直線上可求得,由等比中項(xiàng)的定義可構(gòu)造方程求得結(jié)果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.【點(diǎn)睛】本題考查根據(jù)三項(xiàng)成等比數(shù)列求解參數(shù)值的問(wèn)題,涉及到等比中項(xiàng)的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長(zhǎng)方體的體對(duì)角線的長(zhǎng),長(zhǎng)方體的體對(duì)角線的長(zhǎng)為,所以容器體積的最小值為.15、18【解析】
根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個(gè)個(gè)體的編號(hào)成等差數(shù)列,故可根據(jù)其中三個(gè)個(gè)體的編號(hào)求出另一個(gè)個(gè)體的編號(hào).【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個(gè)個(gè)體的編號(hào)成等差數(shù)列,已知其中三個(gè)個(gè)體的編號(hào)為5,31,44,故還有一個(gè)抽取的個(gè)體的編號(hào)為18,故答案為:18【點(diǎn)睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡(jiǎn)單題.16、【解析】
作出圖形,設(shè)點(diǎn)為線段的中點(diǎn),可得出且,進(jìn)而可計(jì)算出的值.【詳解】設(shè)點(diǎn)為線段的中點(diǎn),則,,,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的計(jì)算,涉及平面向量數(shù)量積運(yùn)算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)4【解析】
(1)利用判斷是等差數(shù)列,利用求出,利用等比中項(xiàng)建立方程,求出公差可得.(2)利用的通項(xiàng)公式,求出,用錯(cuò)位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項(xiàng),,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿(mǎn)足條件的最小的正整數(shù)的值為.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式及錯(cuò)位相減法求和.(1)解決等差數(shù)列通項(xiàng)的思路(1)在等差數(shù)列中,是最基本的兩個(gè)量,一般可設(shè)出和,利用等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式列方程(組)求解即可.(2)錯(cuò)位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用錯(cuò)位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫(xiě)“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“”的表達(dá)式18、(1)見(jiàn)詳解;(2).【解析】
(1)因?yàn)檎奂埡驼澈喜桓淖兙匦?,和菱形?nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因?yàn)槭瞧矫娲咕€,所以易證.(2)在圖中找到對(duì)應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因?yàn)楹驼吃谝黄?,A,C,G,D四點(diǎn)共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過(guò)B作延長(zhǎng)線于H,連結(jié)AH,因?yàn)锳B平面BCGE,所以而又,故平面,所以.又因?yàn)樗允嵌娼堑钠矫娼?,而在中,又因?yàn)楣?,所?而在中,,即二面角的度數(shù)為.【點(diǎn)睛】很新穎的立體幾何考題.首先是多面體粘合問(wèn)題,考查考生在粘合過(guò)程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉(zhuǎn)化為求二面角的平面角問(wèn)題考查考生的空間想象能力.19、(1)見(jiàn)解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;(2)以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因?yàn)槠矫妫?,又,所以平面,所以,又,所?若平面平面,則平面,所以,由且,又,所以.以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,則,,設(shè)則由,可得,,即,所以可得,所以,設(shè)平面的一個(gè)法向量為,則,,,取,得所以易知平面的法向量為,設(shè)平面與平面所成的二面角為,則,結(jié)合圖形可知平面與平面所成的二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的判定定理及性質(zhì)定理的應(yīng)用,利用空間向量法求二面角,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),屬于中檔題.20、(1);(2)或【解析】
(1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡(jiǎn)后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡(jiǎn)后寫(xiě)出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點(diǎn),則且.(2)法一:設(shè)點(diǎn)因?yàn)?,,所以又點(diǎn),都在橢
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 辣椒收購(gòu)合同范本3篇
- 采煤隊(duì)承包合同3篇
- 酒店廚師長(zhǎng)工作合同模板3篇
- 設(shè)計(jì)合同服務(wù)類(lèi)3篇
- 簡(jiǎn)易五金材料采購(gòu)合同范本3篇
- 2024年某裝飾企業(yè)室內(nèi)裝修材料供應(yīng)合作合同版
- 2024年度文員崗位晉升合同范本2篇
- 2024年度知識(shí)產(chǎn)權(quán)許可合同:專(zhuān)利技術(shù)許可使用協(xié)議
- 2024中介個(gè)人租房合同范本:老舊小區(qū)改造租賃服務(wù)協(xié)議6篇
- 2024年云計(jì)算服務(wù)合同范本3篇
- 2024-2025學(xué)年寒假致學(xué)生家長(zhǎng)的一封信(安全版)
- 人才引進(jìn)政策購(gòu)房合同模板
- 《兩用物項(xiàng)證》課件
- 《電梯維保規(guī)則》課件
- DB54T 0425.1-2024 公共數(shù)據(jù) 數(shù)據(jù)元規(guī)范 第一部分:總則
- 江蘇省泰州市2023-2024學(xué)年高一上學(xué)期期末語(yǔ)文試題及答案
- 浙江省杭州市2023-2024學(xué)年高一上學(xué)期1月期末英語(yǔ)試題 含解析
- 人教版(2024新版)英語(yǔ)七年級(jí)上冊(cè)期末復(fù)習(xí)綜合測(cè)試卷(含答案)
- 【中考真題】四川省廣安市2024年中考語(yǔ)文真題試卷(含答案)
- 學(xué)校教材教輔排查總結(jié)報(bào)告三篇
- 衛(wèi)生部手術(shù)分級(jí)目錄(2023年1月份修訂)
評(píng)論
0/150
提交評(píng)論