版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁北京師范大學(xué)
《深度學(xué)習(xí)前沿》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在使用隨機(jī)森林算法進(jìn)行分類任務(wù)時,以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個決策樹組成的集成模型,通過投票來決定最終的分類結(jié)果B.隨機(jī)森林在訓(xùn)練過程中對特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個決策樹慢,因?yàn)樾枰獦?gòu)建多個決策樹2、在機(jī)器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.對原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計(jì)算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進(jìn)行一次,后續(xù)不需要再進(jìn)行調(diào)整和優(yōu)化3、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來預(yù)測股票價格的走勢。以下哪種數(shù)據(jù)特征可能對預(yù)測結(jié)果幫助較小()A.公司的財(cái)務(wù)報(bào)表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)4、過擬合是機(jī)器學(xué)習(xí)中常見的問題之一。以下關(guān)于過擬合的說法中,錯誤的是:過擬合是指模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在測試數(shù)據(jù)上表現(xiàn)不佳。過擬合的原因可能是模型過于復(fù)雜或者訓(xùn)練數(shù)據(jù)不足。那么,下列關(guān)于過擬合的說法錯誤的是()A.增加訓(xùn)練數(shù)據(jù)可以緩解過擬合問題B.正則化是一種常用的防止過擬合的方法C.過擬合只在深度學(xué)習(xí)中出現(xiàn),傳統(tǒng)的機(jī)器學(xué)習(xí)算法不會出現(xiàn)過擬合問題D.可以通過交叉驗(yàn)證等方法來檢測過擬合5、某機(jī)器學(xué)習(xí)項(xiàng)目需要對圖像中的物體進(jìn)行實(shí)例分割,除了常見的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以6、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)7、在進(jìn)行機(jī)器學(xué)習(xí)模型評估時,我們經(jīng)常使用混淆矩陣來分析模型的性能。假設(shè)一個二分類問題的混淆矩陣如下:()預(yù)測為正類預(yù)測為負(fù)類實(shí)際為正類8020實(shí)際為負(fù)類1090那么該模型的準(zhǔn)確率是多少()A.80%B.90%C.70%D.85%8、在進(jìn)行深度學(xué)習(xí)中的圖像生成任務(wù)時,生成對抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,它們通過相互對抗來提高生成圖像的質(zhì)量B.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實(shí)的還是由生成器生成的D.GAN的訓(xùn)練過程穩(wěn)定,不容易出現(xiàn)模式崩潰等問題9、在構(gòu)建一個機(jī)器學(xué)習(xí)模型時,如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項(xiàng)B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行10、考慮一個圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο?。以下哪種方法常用于圖像分割?()A.閾值分割B.區(qū)域生長C.邊緣檢測D.以上都是11、某機(jī)器學(xué)習(xí)模型在訓(xùn)練時出現(xiàn)了過擬合現(xiàn)象,除了正則化,以下哪種方法也可以嘗試用于緩解過擬合?()A.增加訓(xùn)練數(shù)據(jù)B.減少特征數(shù)量C.早停法D.以上方法都可以12、機(jī)器學(xué)習(xí)中的算法選擇需要考慮多個因素。以下關(guān)于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點(diǎn)、問題的類型、計(jì)算資源等因素。不同的算法適用于不同的場景。那么,下列關(guān)于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復(fù)雜的深度學(xué)習(xí)算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實(shí)時性要求高的任務(wù),優(yōu)先選擇計(jì)算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法13、假設(shè)正在比較不同的聚類算法,用于對一組沒有標(biāo)簽的客戶數(shù)據(jù)進(jìn)行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法14、在一個回歸問題中,如果數(shù)據(jù)存在非線性關(guān)系并且噪聲較大,以下哪種模型可能更適合?()A.多項(xiàng)式回歸B.高斯過程回歸C.嶺回歸D.Lasso回歸15、假設(shè)正在研究一個自然語言處理任務(wù),需要對句子進(jìn)行語義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長短時記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點(diǎn)16、在進(jìn)行模型評估時,除了準(zhǔn)確率、召回率等指標(biāo),還可以使用混淆矩陣來更全面地了解模型的性能。假設(shè)我們有一個二分類模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.混淆矩陣的行表示真實(shí)類別,列表示預(yù)測類別B.真陽性(TruePositive,TP)表示實(shí)際為正例且被預(yù)測為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實(shí)際為正例但被預(yù)測為負(fù)例的樣本數(shù)量D.混淆矩陣只能用于二分類問題,不能用于多分類問題17、在一個多標(biāo)簽分類問題中,每個樣本可能同時屬于多個類別。例如,一篇文章可能同時涉及科技、娛樂和體育等多個主題。以下哪種方法可以有效地處理多標(biāo)簽分類任務(wù)?()A.將多標(biāo)簽問題轉(zhuǎn)化為多個二分類問題,分別進(jìn)行預(yù)測B.使用一個單一的分類器,輸出多個概率值表示屬于各個類別的可能性C.對每個標(biāo)簽分別訓(xùn)練一個獨(dú)立的分類器D.以上方法都不可行,多標(biāo)簽分類問題無法通過機(jī)器學(xué)習(xí)解決18、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。假設(shè)我們有一個數(shù)據(jù)集,包含了房屋的面積、房間數(shù)量、地理位置等特征,以及對應(yīng)的房價。如果我們想要使用監(jiān)督學(xué)習(xí)算法來預(yù)測新房屋的價格,以下哪種算法可能是最合適的()A.K-Means聚類算法B.決策樹算法C.主成分分析(PCA)D.獨(dú)立成分分析(ICA)19、在機(jī)器學(xué)習(xí)中,對于一個分類問題,我們需要選擇合適的算法來提高預(yù)測準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時樣本數(shù)量相對較少。在這種情況下,以下哪種算法可能是一個較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯20、在進(jìn)行機(jī)器學(xué)習(xí)模型評估時,除了準(zhǔn)確性等常見指標(biāo)外,還可以使用混淆矩陣來更詳細(xì)地分析模型的性能。對于一個二分類問題,混淆矩陣包含了真陽性(TP)、真陰性(TN)、假陽性(FP)和假陰性(FN)等信息。以下哪個指標(biāo)可以通過混淆矩陣計(jì)算得到,并且對于不平衡數(shù)據(jù)集的評估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)二、簡答題(本大題共5個小題,共25分)1、(本題5分)說明機(jī)器學(xué)習(xí)在美容美發(fā)行業(yè)中的形象設(shè)計(jì)。2、(本題5分)說明機(jī)器學(xué)習(xí)在健身運(yùn)動中的個性化方案。3、(本題5分)說明機(jī)器學(xué)習(xí)在細(xì)胞生物學(xué)中的研究方法。4、(本題5分)說明機(jī)器學(xué)習(xí)中XGBoost算法的改進(jìn)之處。5、(本題5分)簡述機(jī)器學(xué)習(xí)在轉(zhuǎn)錄組學(xué)中的表達(dá)分析。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用K-Means聚類算法對客戶進(jìn)行細(xì)分。2、(本題5分)借助糖尿病相關(guān)數(shù)據(jù)研究疾病的病理生理機(jī)制和治療方法。3、(本題5分)運(yùn)用梯度提升樹預(yù)測房價的波動。4、(本題5分)運(yùn)用梯度提升樹模型預(yù)測農(nóng)產(chǎn)品的產(chǎn)量。5、(本題5分)依據(jù)心血管疾病相關(guān)數(shù)據(jù)預(yù)測疾病風(fēng)險(xiǎn)和制定治療方案。四、論述題(本大題共3個小題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年國家甲級資質(zhì):中國汽車仿真電路學(xué)生實(shí)習(xí)臺融資商業(yè)計(jì)劃書
- 2024-2030年國家甲級資質(zhì):中國120度模溫機(jī)融資商業(yè)計(jì)劃書
- 2024-2030年吡嗪二羧酸搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024-2030年單標(biāo)吸管公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年剝夾具公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年六氟磷酸四乙基磷搬遷改造項(xiàng)目可行性研究報(bào)告
- 2024-2030年全球市場巴西堅(jiān)果油市場營銷策略及銷售渠道策略報(bào)告
- 2024-2030年全球及中國金剛石磨盤行業(yè)發(fā)展現(xiàn)狀及供需前景預(yù)測報(bào)告
- 2024年甲乙雙方股權(quán)轉(zhuǎn)讓合同書詳細(xì)規(guī)定
- 2024-2030年全球及中國汽車排氣歧管墊片行業(yè)供需現(xiàn)狀及消費(fèi)前景展望報(bào)告
- 2025年廣東省春季高考英語語法填空專項(xiàng)復(fù)習(xí)試題二(含答案解析)
- 智能無人機(jī)銷售合同
- 《微服務(wù)體系架構(gòu)》教學(xué)大綱
- 中國鐵路南昌局集團(tuán)有限公司招聘筆試題庫2024
- 華為年財(cái)務(wù)報(bào)表分析(共16張課件)
- 幼兒園中班數(shù)學(xué)活動《營救汪汪隊(duì)》
- 小兒手足口病課件
- 2024年計(jì)算機(jī)組成原理期末考試試題及答案共五套
- 滬科版(2024)八年級全一冊物理第一學(xué)期期末學(xué)業(yè)質(zhì)量測試卷(含答案)
- 2024年部編新改版語文小學(xué)一年級上冊第六單元復(fù)習(xí)課教案
- 2024年陜西省西安市中考地理試題卷(含答案逐題解析)
評論
0/150
提交評論