版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東省濟(jì)寧市泗水一中下學(xué)期高考數(shù)學(xué)必刷試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線x=對(duì)稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)2.函數(shù)與的圖象上存在關(guān)于直線對(duì)稱的點(diǎn),則的取值范圍是()A. B. C. D.3.“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612424.設(shè),是非零向量,若對(duì)于任意的,都有成立,則A. B. C. D.5.中國(guó)古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種6.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點(diǎn),且,,則異面直線與所成角的余弦值為()A. B. C. D.7.命題“”的否定是()A. B.C. D.8.已知雙曲線的右焦點(diǎn)為,過的直線交雙曲線的漸近線于兩點(diǎn),且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.9.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.810.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.128011.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.12.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測(cè)該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為)建立了投資額y與時(shí)間變量t的線性回歸模型,根據(jù)該模型預(yù)測(cè)該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為__________.14.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).15.已知函數(shù),若,則___________.16.滿足約束條件的目標(biāo)函數(shù)的最小值是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.18.(12分)如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn)處,且滿足.(1)證明:平面;(2)求二面角的余弦值.19.(12分)中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽(yáng)馬”,將四個(gè)面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽(yáng)馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;(2)求直線與平面所成角的正弦值.20.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長(zhǎng);(2)求二面角的余弦值.21.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對(duì)于任意恒成立,求的取值范圍.22.(10分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;(2)若,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因?yàn)楹瘮?shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個(gè)單位后,得到圖像所對(duì)應(yīng)的函數(shù)解析式為,由此函數(shù)圖像關(guān)于直線對(duì)稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.2、C【解析】
由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對(duì)分類討論,得出時(shí),取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí),取得極大值,也即為最大值,當(dāng)趨近于時(shí),趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.3、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。4、D【解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長(zhǎng)最小的向量,如圖,當(dāng),即時(shí),最小,滿足,對(duì)于任意的,所以本題答案為D.【點(diǎn)睛】本題主要考查了空間向量的加減法,以及點(diǎn)到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.5、C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6、B【解析】
建立空間直角坐標(biāo)系,利用向量法計(jì)算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點(diǎn)為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點(diǎn)睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.7、D【解析】
根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.8、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),考查向量知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.9、A【解析】
由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐模?,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10、A【解析】
根據(jù)二項(xiàng)式展開式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).11、B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對(duì)任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.12、D【解析】
根據(jù)圖像所給的數(shù)據(jù),對(duì)四個(gè)選項(xiàng)逐一進(jìn)行分析排除,由此得到表述不正確的選項(xiàng).【詳解】對(duì)于選項(xiàng),由圖像可知,投資額逐年增加是正確的.對(duì)于選項(xiàng),投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對(duì)于選項(xiàng),令代入回歸直線方程得億元,故選項(xiàng)描述不正確.所以本題選D.【點(diǎn)睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進(jìn)行預(yù)測(cè)的方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)?,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點(diǎn):古典概型概率14、必要不充分【解析】
先求解直線l1與直線l2平行的等價(jià)條件,然后進(jìn)行判斷.【詳解】“直線l1:與直線l2:平行”等價(jià)于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點(diǎn)睛】本題主要考查充分必要條件的判定,把已知條件進(jìn)行等價(jià)轉(zhuǎn)化是求解這類問題的關(guān)鍵,側(cè)重考查邏輯推理的核心素養(yǎng).15、【解析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因?yàn)楹瘮?shù),其定義域?yàn)?,所以其定義域關(guān)于原點(diǎn)對(duì)稱,又,所以函數(shù)為奇函數(shù),因?yàn)?,所?故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、??碱}型.16、-2【解析】
可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】
(1)分類討論求解絕對(duì)值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當(dāng)時(shí),等價(jià)于,該不等式恒成立,當(dāng)時(shí),等價(jià)于,該不等式解集為,當(dāng)時(shí),等價(jià)于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因?yàn)椋?,,所以,,,所以,?dāng)且僅當(dāng)時(shí)等號(hào)成立.【點(diǎn)睛】本題考查利用分類討論求解絕對(duì)值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.18、(1)見解析;(2)【解析】
(1)取的中點(diǎn),連接,,由,進(jìn)而,由,得.進(jìn)而平面,進(jìn)而結(jié)論可得證(2)(方法一)過點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點(diǎn),上的點(diǎn),使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點(diǎn),連接,,由已知得,所以,又點(diǎn)是的中點(diǎn),所以.因?yàn)?,點(diǎn)是線段的中點(diǎn),所以.又因?yàn)?,所以,從而平面,所以,又,不平行,所以平?(2)(方法一)由(1)知,過點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則點(diǎn),,,,所以,,.設(shè)平面的法向量為,由,得,令,得.同理,設(shè)平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點(diǎn),上的點(diǎn),使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計(jì)算得,,,所以.【點(diǎn)睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計(jì)算能力,是中檔題19、(1)證明見解析,是,,,,;(2)【解析】
(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進(jìn)而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點(diǎn),,,所在直線為x,y,z軸建立直角坐標(biāo)系,設(shè),由,解得,得到,從而得到,然后求得平面的一個(gè)法向量,代入公式求解.【詳解】(1)因?yàn)槭乔虻闹睆?,則,又平面,∴,.∴平面,∴,∴平面.根據(jù)證明可知,四面體是鱉臑.它的每個(gè)面的直角分別是,,,.(2)如圖,以A為原點(diǎn),,,所在直線為x,y,z軸建立直角坐標(biāo)系,則,,,,.M為中點(diǎn),從而.所以,設(shè),則.由,得.由得,即.所以.設(shè)平面的一個(gè)法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.【點(diǎn)睛】本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.20、(1)(2)【解析】
(1)先證得,設(shè)與交于點(diǎn),在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)由題意,,設(shè)與交于點(diǎn),在中,可求得,則,可求得,則(2)以為原點(diǎn),方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度跨境電商倉(cāng)儲(chǔ)租賃合同合法經(jīng)營(yíng)拓展全球市場(chǎng)4篇
- 二零二五年度建筑工地鋼筋施工安全培訓(xùn)合同
- 二零二五版網(wǎng)絡(luò)短視頻剪輯師招聘合同范本3篇
- 二零二五年度建筑用沙子購(gòu)銷及環(huán)保審計(jì)合同3篇
- 2025年皮包原材料進(jìn)口合同二零二五年度版4篇
- 二零二五年度拍賣會(huì)籌備及組織服務(wù)合同4篇
- 2025年度牛羊肉品牌保護(hù)及侵權(quán)糾紛處理合同
- 二零二五年度內(nèi)墻抹灰工程質(zhì)量監(jiān)督合同范例
- 二零二五版摩托車二手車交易評(píng)估與收購(gòu)合同4篇
- 2025年建筑物清潔與智能安防系統(tǒng)維護(hù)合同3篇
- 2024-2025學(xué)年北京石景山區(qū)九年級(jí)初三(上)期末語(yǔ)文試卷(含答案)
- 第一章 整式的乘除 單元測(cè)試(含答案) 2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)下冊(cè)
- 春節(jié)聯(lián)歡晚會(huì)節(jié)目單課件模板
- 中國(guó)高血壓防治指南(2024年修訂版)
- 糖尿病眼病患者血糖管理
- 抖音音樂推廣代運(yùn)營(yíng)合同樣本
- 教育促進(jìn)會(huì)會(huì)長(zhǎng)總結(jié)發(fā)言稿
- 北師大版(2024新版)七年級(jí)上冊(cè)數(shù)學(xué)第四章《基本平面圖形》測(cè)試卷(含答案解析)
- 心理調(diào)適教案調(diào)整心態(tài)積極應(yīng)對(duì)挑戰(zhàn)
- 小學(xué)數(shù)學(xué)6年級(jí)應(yīng)用題100道附答案(完整版)
- 噴漆外包服務(wù)合同范本
評(píng)論
0/150
提交評(píng)論