版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)二輪復(fù)習(xí)講義——選填題部分第6講三角函數(shù)單獨(dú)考查三角變換的題目較少,往往以解三角形為背景,在應(yīng)用正弦定理、余弦定理的同時(shí),應(yīng)用三角恒等變換進(jìn)行化簡(jiǎn),綜合性比較強(qiáng),但難度不大.也可能與三角函數(shù)等其他知識(shí)相結(jié)合.三角函數(shù)的考查重點(diǎn)是三角函數(shù)的定義、圖象與性質(zhì),考查中以圖象的變換、函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性、最值作為熱點(diǎn),并常與三角恒等變換交匯命題,難度為中檔偏下.題型一、三角恒等變換考點(diǎn)1.同角之間的關(guān)系、誘導(dǎo)公式1.已知角α的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的正半軸重合,若它的終邊經(jīng)過(guò)點(diǎn)P(2,1),則tan(2α+πA.﹣7 B.?17 C.1【解答】解:根據(jù)題意,tanα=1∴tan2α=2tanα∴tan(2α+π故選:A.2.已知sinα+cosβ=1,cosα+sinβ=0,則sin(α+β)=?12【解答】解:sinα+cosβ=1,兩邊平方可得:sin2α+2sinαcosβ+cos2β=1,①,cosα+sinβ=0,兩邊平方可得:cos2α+2cosαsinβ+sin2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1,∴2sin(α+β)=﹣1.∴sin(α+β)=?1故答案為:?13.若tanα=34,則cos2α+2sin2A.6425 B.4825 C.1 【解答】解:∵tanα=3∴cos2α+2sin2α=cos故選:A.4.已知θ是第四象限角,且sin(θ+π4)=35,則tan(θ?π【解答】解:∵θ是第四象限角,∴?π2+2kπ<θ<2kπ又sin(θ+π4)∴cos(θ+π4)∴cos(π4?θ)=sin(θ+π4)=35,sin(π則tan(θ?π4)=﹣tan(π4故答案為:?4考點(diǎn)2.兩角和與差角公式、二倍角公式、輔助角公式1.已知向量a→=(1,sinα),b→=(2,cosα),且a→∥b【解答】解:∵a→∥b→,∴2sinα﹣cosα=0,即cosα=2sin則sinα+2cosαcosα?3sinα2.已知sinx﹣siny=?23,cosx﹣cosy=23且x,y為銳角,則tan(x﹣y)=【解答】解:∵sinx﹣siny=?23,cosx﹣cosy兩式平方相加得:cos(x﹣y)=5∵x、y為銳角,sinx﹣siny<0,∴x<y,∴sin(x﹣y)=?1∴tan(x﹣y)=sin(x?y)故答案為:?23.已知sinθ+sin(θ+π3)=1,則sin(θA.12 B.33 C.23【解答】解:∵sinθ+sin(θ+π∴sinθ+12sinθ+3即32sinθ+32得3(12cosθ+32即3sin(θ+π得sin(θ+π6故選:B.4.已知α∈(π2,π),并且sinα+2cosα=25,則tan(A.?1731 B.?3117 C.?【解答】解:由sinα+2cosα=25,得sin2α+4sinαcosα+4cos2α所以(1﹣cos2α)+4sinαcosα+4(1﹣sin2α)=4整理得cos2α﹣4sinαcosα+4sin2α=121所以(cosα﹣2sinα)2=121因?yàn)棣痢剩é?,π),所以sinα>0所以cosα﹣2sinα=?115,又sinα+2cosα則sinα+2cosαcosα?2sinα=?2解得tanα=?24所以tan(α+π4)故選:A.5.若α,β∈(0,π2),cos(α?β2)=3A.?32 B.?12 C.【解答】解:由α,β∈(0,π則α?β2∈(?又cos(α?β2)=所以α?β2解得α=β=π3,所以cos(α+β)故選:B.6.已知tan(α﹣β)=12,tanβ=?17,且α,β∈(0,πA.π4 B.πC.?3π4 【解答】∵tan(α﹣β)=tanα?tanβ1+tanαtanβ=即tanα=∵α,β∈(0,π)且tanπ4=1,tan∴α∈(0,π4),β∈(3π4,即2α﹣β∈(﹣π,?π∴tan(2α﹣β)=tanα+tan(α?β)即2α﹣β=?故選:C.7.已知α∈(0,π2),2sin2α﹣cos2A.15 B.55 C.35【解答】解:因?yàn)?sin2α﹣cos2α=1,所以4sinαcosα﹣2cos2α+1=1,即2sinαcosα=cos2α,因?yàn)棣痢?0,π2可得sinα=12cos所以sin2α+cos2α=14cos2α+cos2α=1,可得cos2α=45故選:D.8.若α∈(0,π),且sinα﹣2cosα=2,則tanα2A.3 B.2 C.12 D.【解答】解:∵sinα﹣2cosα=2,∴sinα=2+2cosα,則2sinα又α∈(0,π),∴cosα2≠0,則tan故選:B.考點(diǎn)3.三角恒等變換綜合1.若sinβ=3sin(2α﹣β),則2tan(α﹣β)+tanα的值為0.【解答】解:∵sinβ=3sin(2α﹣β),∴sin[α﹣(α﹣β)]=3sin[(α﹣β)+α],∴sinαcos(α﹣β)﹣cosαsin(α﹣β)=3sin(α﹣β)cosα+3cos(α﹣β)sinα,∴﹣2sinαcos(α﹣β)=4cosαsin(α﹣β),即tanα=﹣2tan(α﹣β),∴2tan(α﹣β)+tanα=0,故答案為:0.2.已知2+5cos2α=cosα,cos({2α+β})=45,α∈(0,π2),β∈(3π2,2A.?45 B.44125 C.?【解答】解:因?yàn)?+5cos2α=2+5(2cos2α﹣1)=cosα,整理可得:10cos2α﹣cosα﹣3=0,解得cosα=35,或又因?yàn)棣痢?0,所以cosα=35,可得sinα∴π4<α可得cos2α=2cos2α﹣1=?725,sin2α=2sinαcosα因?yàn)閏os(2α+β)=45所以2α+β∈(2π,2π+2π故sin(2α+β)=3所以cosβ=cos[(2α+β)﹣2α]=cos(2α+β)cos2α+sin(2α+β)sin2α=45×(?故選:B.3.若SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由兩角和差的正余弦公式化簡(jiǎn),結(jié)合同角三角函數(shù)的商數(shù)關(guān)系即可得解.【詳解】[方法一]:直接法由已知得:SKIPIF1<0,即:SKIPIF1<0,即:SKIPIF1<0所以SKIPIF1<0故選:C[方法二]:特殊值排除法解法一:設(shè)β=0則sinα+cosα=0,取SKIPIF1<0,排除A,B;再取α=0則sinβ+cosβ=2sinβ,取βSKIPIF1<0,排除D;選C.[方法三]:三角恒等變換SKIPIF1<0所以SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:C.4.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題,SKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:D.5.已SKIPIF1<0,且SKIPIF1<0則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0平方得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:D.6.已知角SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0.故選:C.題型二、三角函數(shù)的圖像考點(diǎn)1.伸縮變換1.要得到函數(shù)y=3sin(2x+π3)的圖象,只需要將函數(shù)y=3cos2A.向右平行移動(dòng)π12個(gè)單位B.向左平行移動(dòng)π12個(gè)單位C.向右平行移動(dòng)π6個(gè)單位D.向左平行移動(dòng)π6【解答】解:函數(shù)y=3sin(2x+π3)=3cos[π2?(2x+π3)]=3cos(π6?2故把函數(shù)y=3cos2x的圖象向右平行移動(dòng)π12個(gè)單位,可得函數(shù)y=3sin(2x+故選:A.2.已知曲線C1:y=cosx,C2:y=sin(2x+2πA.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移π6個(gè)單位長(zhǎng)度,得到曲線C2B.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移π12個(gè)單位長(zhǎng)度,得到曲線C2C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的12,縱坐標(biāo)不變,再把得到的曲線向右平移π6個(gè)單位長(zhǎng)度,得到曲線CD.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的12,縱坐標(biāo)不變,再把得到的曲線向左平移π12個(gè)單位長(zhǎng)度,得到曲線【解答】解:曲線C2:y=sin(2x+2π3)=cos(2x把C1:y=cosx上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的12,縱坐標(biāo)不變,可得y=cos2x再把得到的曲線向左平移π12個(gè)單位長(zhǎng)度,可以得到曲線C2:y=cos(2x+π6)=sin(2故選:D.3.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函數(shù),且f(x)的最小正周期為π,將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象對(duì)應(yīng)的函數(shù)為g(x).若g(π4)=2,則f(A.﹣2 B.?2 C.2 【解答】解:∵f(x)是奇函數(shù),∴φ=0,∵f(x)的最小正周期為π,∴2πω=π,得則f(x)=Asin2x,將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象對(duì)應(yīng)的函數(shù)為g(x).則g(x)=Asinx,若g(π4)=2,則g(π4)=Asinπ4=則f(x)=Asin2x,則f(3π8)=2sin(2×3π8=2sin故選:C.4.函數(shù)y=cos(2x+φ)(﹣π≤φ<π)的圖象向右平移π2個(gè)單位后,與函數(shù)y=sin(2x+π3)的圖象重合,則φ=【解答】解:函數(shù)y=cos(2x+φ)(﹣π≤φ<π)的圖象向右平移π2y=cos[2(x?π2)+φ]=cos(2x+φ﹣而函數(shù)y=sin(2x+π3)由函數(shù)y=cos(2x+φ)(﹣π≤φ<π)的圖象向右平移π2個(gè)單位后,與函數(shù)y=sin(2x+2x+φ﹣π=2x+π3?π符合﹣π≤φ<π.故答案為5π65.若y=|3sin(ωx+π12)+2|的圖象向右平移π6個(gè)單位后與自身重合,且y=tanωx的一個(gè)對(duì)稱中心為(π48,0),則【解答】解:∵y=|3sin(ωx+π12)+2|的圖象向右平移∴π6=k?2πω,k則ω=12k,k∈N,①∵y=tanx的對(duì)稱中心為(kπ2∴y=tanωx(ω∈N*)的對(duì)稱中心是(kπ2ω又(π48,0)是函數(shù)y=tanωx(ω∈N*∴kπ2ω=π48(∴ω=24k,k∈N,②由①②知,ω的最小正值為24.故答案是:24.6.將函數(shù)f(x)=3sin2x的圖象向右平移φ(0<φ<π2)個(gè)單位后得到函數(shù)g(x)的圖象,若對(duì)滿足|f(x1)﹣g(x2)|=6的x1,x2,有|x1﹣x2|min=πA.5π12 B.π3 C.π4【解答】解:由于函數(shù)f(x)=3sin2x的圖象向右平移φ(0<φ<π2)個(gè)單位后得到函數(shù)g(x)=3sin(2x﹣2所以|f(x1)﹣g(x2)|=3|sin2x1﹣sin(2x2﹣2φ)|=6,由于﹣1≤sin2x1≤1,﹣1≤sin(2x2﹣2φ)≤1.所以sin2x1和sin(2x2﹣2φ)的值中,一個(gè)為1,一個(gè)為﹣1.不妨設(shè)sin2x1=1,sin(2x2﹣2?)=﹣1,則2x1=2k1π+π2,2x2﹣2φ=2k所以2x1﹣2x2+2φ=2(k1﹣k2)π+π(k1﹣k2∈Z),得到:|x由于0<φ<π2,所以故當(dāng)k1﹣k2=0時(shí),|x1?x故選:B.考點(diǎn)2.求解析式1.圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間[?π6,5π6]上的圖象,為了得到這個(gè)函數(shù)的圖象,只要將yA.向左平移π3個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的12B.向左平移π3個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變C.向左平移π6個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的12D.向左平移π6【解答】解:由圖象可知函數(shù)的周期為π,振幅為1,所以函數(shù)的表達(dá)式可以是y=sin(2x+φ).代入(?π6,0)可得φ的一個(gè)值為故圖象中函數(shù)的一個(gè)表達(dá)式是y=sin(2x+π即y=sin2(x+π所以只需將y=sinx(x∈R)的圖象上所有的點(diǎn)向左平移π3個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的1故選:A.2.已知函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù),且A>0,ω>0,|φ|<π2)的部分圖象如圖所示,若f(α)=3A.?34 B.?18 C.【解答】解:由題設(shè)圖象知,A=2,周期T=4(7π6?2π∴ω=2π∵點(diǎn)(2π3∴2sin(2π3+φ)=2,即sin(2π又∵?π2<∴從而2π3+φ=π2故函數(shù)f(x)的解析式為f(x)=2sin(x?π由f(α)=32,可得f(α)=2sin(α?π6)=32那么sin(2α+π6)=cos(π2?2α?π6)=cos(2α?π3)=1故選:B.3.已知函數(shù)f(x)=Asin(π3x+?),x∈R,A>0,0<?<π2.y=f(x)的部分圖象如圖所示,P,Q分別為該圖象的最高點(diǎn)和最低點(diǎn),PR垂直x軸于點(diǎn)R,R的坐標(biāo)為(1,0),若∠A.12 B.32 C.34【解答】解:由題意得,函數(shù)f(x)的最小正周期T=2π由R的坐標(biāo)為(1,0),點(diǎn)P的坐標(biāo)為(1,A),設(shè)點(diǎn)Q的坐標(biāo)為(4,﹣A),過(guò)點(diǎn)Q做x軸的垂線,設(shè)垂足為M,則RM=3,∵∠PRQ=2π3,∴∠MRQ∴|MQ|=A=3×tanπ6由題意得,T=2π∵P(1,A)在函數(shù)f(x)=Asin(π3x+Φ∴sin(π3+又∵0<Φ<π∴Φ=π∴f(x)=3sin(π3x+π6),f(0)故選:B.4.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<π2)的部分圖象如圖所示,下列關(guān)于函數(shù)g(x)=Acos(ωx+φ)(x∈A.函數(shù)g(x)的圖象關(guān)于點(diǎn)(π4,0B.函數(shù)g(x)在[?π8C.函數(shù)g(x)的圖象關(guān)于直線x=π8D.函數(shù)h(x)=cos2x的圖象上所有點(diǎn)向左平移π4個(gè)單位得到函數(shù)g(x【解答】解:根據(jù)函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<π最小正周期為T(mén)=2×(3π8?π8)=π又ω?π8+φ=π2+kπ,k∈Z,φ=π4∴φ=π4,∴f(0)=Atanπ∴函數(shù)g(x)=cos(2x+πx=π4時(shí),g(π4)=cos(πg(shù)(x)的圖象不關(guān)于點(diǎn)(π4,0)對(duì)稱,x∈[?π8,3π8]時(shí),2x+πg(shù)(x)在[?π8,x=π8時(shí),g(π8g(x)的圖象不關(guān)于直線x=π8對(duì)稱,h(x)=cos2x的圖象上所有點(diǎn)向左平移π4得h(x+π4)=cos2(x+π4不是函數(shù)g(x)的圖象,D錯(cuò)誤.故選:B.題型三、三角函數(shù)的最值、取值范圍1.函數(shù)f(x)=15sin(x+π3)+cos(A.65 B.1 C.35 【解答】解:函數(shù)f(x)=15sin(x+π3)+cos(x?π6)=15sin(x+π3)+cos(﹣x=65sin(x+π故選:A.2.已知函數(shù)f(x)=2sinx+sin2x,則f(x)的最小值是?33【解答】解:由題意可得T=2π是f(x)=2sinx+sin2x的一個(gè)周期,故只需考慮f(x)=2sinx+sin2x在[0,2π)上的值域,先來(lái)求該函數(shù)在[0,2π)上的極值點(diǎn),求導(dǎo)數(shù)可得f′(x)=2cosx+2cos2x=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),令f′(x)=0可解得cosx=12或cosx=可得此時(shí)x=π3,π或∴y=2sinx+sin2x的最小值只能在點(diǎn)x=π3,π或5π3計(jì)算可得f(π3)=332,f(π)=0,f(5π3∴函數(shù)的最小值為?3故答案為:?33.已知函數(shù)f(x)=2sin2(π4+x)?3cos2x,x∈[π4,π2].若不等式|f(x)﹣m|<2在x∈[π4,π2【解答】解:已知函數(shù)f(x)=2∵x∈[π4,π∴sin(2x?π∴f(x)min=2×12+1=2,f∵不等式|f(x)﹣m|<2在x∈[π4,π2]上恒成立,∴﹣2<f(x即f(x)﹣2<m<f(x)+2在x∈[π因?yàn)閒(x)在[π∴1<m<4.4.已知函數(shù)SKIPIF1<0,下列說(shuō)法錯(cuò)誤的是(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0是周期為π的函數(shù)C.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減 D.SKIPIF1<0的最大值為SKIPIF1<0【詳解】對(duì)選項(xiàng)A,SKIPIF1<0,定義域?yàn)镽,SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故A正確.對(duì)選項(xiàng)B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0的周期為SKIPIF1<0,故B正確.對(duì)選項(xiàng)C,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,故C正確.對(duì)選項(xiàng)D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0.因?yàn)镾KIPIF1<0是周期為π的函數(shù),所以SKIPIF1<0,故D錯(cuò)誤.故選:D題型四、三角函數(shù)的性質(zhì)考點(diǎn)1.三角函數(shù)的單調(diào)性1.函數(shù)y=sin(?2x+π3)的單調(diào)遞減區(qū)間為[kπ?π12,kπ+5π【解答】解:由于函數(shù)y=sin(?2x+π3)=?sin(2x?π3),本題即求函數(shù)令2kπ?π2≤2x?π3≤2kπ+π2,k∈z,可得k故函數(shù)y=sin(?2x+π3)的單調(diào)遞減區(qū)間為[kπ?π12故答案為[kπ?π12,kπ+5π12],2.已知ω>0,函數(shù)f(x)=sin(ωx+π4)在區(qū)間(π2,πA.[12,54] B.【解答】解:法一:令:ω=2?(ωx+π4)∈[ω=1?(ωx+π4)∈[3π4法二:ω(π?π2得:π2故選:A.3.已知函數(shù)f(x)=4sinωx2?cosωx2(ω>0)在區(qū)間[?π2,A.(0,1] B.(0,34] C.[12,34【解答】解:函數(shù)f(x)=4sinωx2?cosωx2=2sinωx則f(x)在[?π2ω,又f(x)在[?π2,則[?π2ω,π2ω]?[?得不等式組?π又ω>0,∴解得0<ω≤3又函數(shù)f(x)在區(qū)間[0,π]上恰好取得一次最大值,根據(jù)正弦函數(shù)的性質(zhì)可知ωx=2kπ+π2,k∈即函數(shù)在x=2kπω+π∴ω≥1綜上所述,可得ω∈[12,3故選:C.考點(diǎn)2.三角函數(shù)的奇偶性1.已知f(x)=sin(x+φ)+cos(x+φ)為奇函數(shù),則φ的一個(gè)取值是()A.π2 B.?π2 C.π【解答】解:∵函數(shù)f(x)是奇函數(shù),∴f(0)=0,即f(0)=sinφ+cosφ=0,得sinφ=﹣cosφ,即tanφ=﹣1,即φ=?π4+kπ,k則當(dāng)k=0時(shí),φ=?π故選:D.2.已知f(x)=3sin2x+acos2x,其中a為常數(shù).f(x)的圖象關(guān)于直線x=π6對(duì)稱,則f(A.[?35π,?16π] B.[?712π,?13π] C.[?16【解答】解:由題意知:y=3sin2x+acos2x=9+a2sin(2x當(dāng)x=π6時(shí)函數(shù)y=3sin2x+acos2x取到最值±將x=π6代入可得:3sin(2×π6)+acos(2×π解得:a=3故f(x)=3sin2x+3cos2x=23sin(2x+由于[?712π,?13π]∈[?5π6,?π故選:B.3.已知函數(shù)f(x)=sinωx+cosωx(ω>0),x∈R,若函數(shù)f(x)在區(qū)間(﹣ω,ω)內(nèi)單調(diào)遞增,且函數(shù)y=f(x)的圖象關(guān)于直線x=ω對(duì)稱,則ω的值為π2【解答】解:∵f(x)=sinωx+cosωx=2sin(ωx+∵函數(shù)f(x)在區(qū)間(﹣ω,ω)內(nèi)單調(diào)遞增,ω>0∴2kπ?π2≤ωx+π4≤2kπ+π2,k∈Z可解得函數(shù)f(x)的單調(diào)遞增區(qū)間為:[∴可得:﹣ω≥2kπ?3π4ω①,ω≤2kπ+π∴解得:0<ω2≤3π4?2kπ且0<ω2≤2kπ+π4解得:?18<k<38∴可解得:k=0,又∵由ωx+π4=kπ+π2,可解得函數(shù)f(x)的對(duì)稱軸為:x=∴由函數(shù)y=f(x)的圖象關(guān)于直線x=ω對(duì)稱,可得:ω2=π4,可解得:ω故答案為:π2考點(diǎn)3.三角函數(shù)的周期性與對(duì)稱性1.已知函數(shù)f(x)=sin(ωx+π4)(ω>0)在(π12,π3)上有最大值,但沒(méi)有最小值,則ω【解答】解:要求函數(shù)f(x)=sin(ωx+π4)(ω>0)在(π12所以π3?π12<T且存在k∈Z,使得?π2+2kπ<ω?π12+π4<π2+因?yàn)?<ω<8,所以π2所以?18<k<所以?π2<ω?π12由?π2<ω?π12+由π2<ω?π3+π所以34<故答案為(342.已知函數(shù)f(x)=2sin(ωx+π4)(ω>0)的圖象在區(qū)間[0,1]上恰有3個(gè)最高點(diǎn),則A.[19π4,27π4) B.[9π2,13π2) C.[17π4,25π4)【解答】解:函數(shù)f(x)=2sin(ωx+π4)(∵x∈[0,1]上,∴ωx+π4∈[π4圖象在區(qū)間[0,1]上恰有3個(gè)最高點(diǎn),∴9π2解得:17π4故選:C.3.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0)若f(x)在區(qū)間[π6,π2]上具有單調(diào)性,且f(π2)=f(2π3)=﹣f(π6),則f(x【解答】解:由f(π2)=f(2π3),可知函數(shù)f(x)的一條對(duì)稱軸為x則x=π2離最近對(duì)稱軸距離為又f(π2)=﹣f(π6),則f(x)有對(duì)稱中心(由于f(x)在區(qū)間[π6,π則π2?π6≤12T?T≥故答案為:π.4.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=?π4為y=f(x)圖象的對(duì)稱軸,x=π4為f(x)的零點(diǎn),且fA.13 B.12 C.9 D.5【解答】解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=?π4為y=f(x)圖象的對(duì)稱軸,x=f(x)在區(qū)間(π12,π6)上單調(diào),∴周期T≥2×(π6?π∵x=?π4為y=f(x)圖象的對(duì)稱軸,x=π4為f(x)的零點(diǎn),∴2n+14?2πω=π2,當(dāng)ω=11時(shí),由題意可得π4×11+φ=kπ,φ=π4,函數(shù)為y=f(x在區(qū)間(π12,π6)上,11x+π4∈(7π6,25π12),當(dāng)ω=9時(shí),由題意可得π4×9+φ=kπ,φ=?π4,函數(shù)為y=f(x在區(qū)間(π12,π6)上,9x?π4∈(π2則ω的最大值為9,故選:C.5.已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|≤π2,?π4為f(x)的零點(diǎn):且f(x)≤|f(π4)|恒成立,f(xA.11 B.13 C.15 D.17【解答】解:由題意知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤πx=π4為y=f(x)圖象的對(duì)稱軸,x=?π4為∴2n?14?2πω=π2,n∈N*,∴ω=2nf(x)在區(qū)間(?π12,∴周期T≥(π24+π12)=π8,即∴要求ω的最大值,結(jié)合選項(xiàng),先檢驗(yàn)ω=15,當(dāng)ω=15時(shí),由題意可得?π4×15+φ=kπ,φ=?π4,函數(shù)為y=f(在區(qū)間(?π12,π24)上,15x?π4∈此時(shí)f(x)在15x?π4=?π則ω的最大值為15,故選:C.6.已知ω>0,函數(shù)f(x)=acos2ωx﹣4cosωx+3a,若對(duì)任意給定的a∈[﹣1,1],總存在x1,x2∈[0,π2](x1≠x2),使得f(x1)=f(x2)=0,則ωA.2 B.4 C.5 D.6【解答】解:由f(x)=acos2ωx﹣4cosωx+3a=2acos2ωx﹣4cosωx+2a.令cosωx=t,a∈[﹣1,1],令f(x)=0,可得:2a=4tt2+1∴t∈[﹣1,1]即cosωx∈[﹣1,1]上有兩個(gè)解.那么x1,x2∈[0,π2](x1≠x2∴π∴ω≥6故選:D.題型五、三角函數(shù)的零點(diǎn)1.已知函數(shù)f(x)=3sinωxcosωx+cos2ωx?12,(ω>0,x∈R),若函數(shù)f(x)在區(qū)間(πA.(0,512] B.(0,512]∪[5C.(0,58] D.(0,56]∪[【解答】解:函數(shù)f(x)=3sinωcosωx+cos2ωx?函數(shù)f(x)在區(qū)間(π2所以:f(π即:sin(πω+π所以:①sin(πω+π解得:ω∈(0,5②sin(πω+π解得:ω∈[56綜上所述:ω∈(0,512]∪[5故選:B.2.已知函數(shù)f(x)=2sin(ωx?π6)sin(ωx+π3)(ω>0),若函數(shù)g(x)=f(x)+3A.[2,113) B.(2,113) C.[73,10【解答】解:f(x)=2sin(ωx?π6)sin(ωx+π3)=2sin(ωx?π=﹣2cos(ωx+π3)sin(ωx+π3)=﹣sin(2由g(x)=f(x)+32=0得f(x即﹣sin(2ωx+2π3)得sin(2ωx+2π3)∵0≤x≤π∴0≤2ωx≤πω,則2π3≤2ωx+2π∵sin2π3∴要使sin(2ωx+2π3)=32,在0∴2π3+2π≤ωπ+2π得2π≤ωπ<11π3,即2≤ω即ω的取值范圍是[2,113故選:A.3.函數(shù)f(x)=2sin(2x+π3),g(x)=mcos(2x?π6)﹣2m+3>0,m>0,對(duì)任意x1∈[0,π4],存在x2∈[0,π4],使得g(x1)=f(x2)成立,則實(shí)數(shù)【解答】解:由題意:f(x)=2sin(2x+π當(dāng)x2∈[0,π4則有:2x2+π3∈[π3當(dāng)2x2+π3)=π2時(shí),函數(shù)當(dāng)2x2+π3)=5π6時(shí),函數(shù)所以:對(duì)于x2∈[0,π4],f(x函數(shù)g(x)=mcos(2x?π6)﹣2m+3,當(dāng)x1∈[0,π4則有:2x1?π6∈[?π當(dāng)2x1?π6=π3時(shí),函數(shù)g(當(dāng)2x1?π6=0時(shí),函數(shù)g(x)取得最大值為:所以:對(duì)于x1∈[0,π4],g(x)的值域?yàn)閇?32m+3,任意x1∈[0,π4],存在x2∈[0,π4],使得g(x1)=f(x2)成立,則有:[?32m+3,﹣即:?解得:1≤m≤故答案為[4.設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:依題意可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,要使函數(shù)在區(qū)間SKIPIF1<0恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),又SKIPIF1<0,SKIPIF1<0的圖象如下所示:
則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故選:C.一、單選題1.已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故選:B.2.函數(shù)SKIPIF1<0的圖像可能是(
)A. B.
C.
D.
【答案】A【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱,故排除C,D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,故此時(shí)SKIPIF1<0,故排除B.故選:A.3.在平面直角坐標(biāo)系中,角SKIPIF1<0的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊在x軸的正半軸上,終邊過(guò)點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因?yàn)榻荢KIPIF1<0的終邊經(jīng)過(guò)點(diǎn)SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:B4.設(shè)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:C5.函數(shù)SKIPIF1<0的最小正周期是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,將函數(shù)圖象在x軸下方部分翻折到x軸上方,所以最小正周期為SKIPIF1<0.故選:C.6.將函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度,得到偶函數(shù)SKIPIF1<0的圖象,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】將SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度,得到SKIPIF1<0的圖象,因?yàn)镾KIPIF1<0為偶函數(shù),且SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0.故選:A7.將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度后得到函數(shù)SKIPIF1<0的圖象,若直線SKIPIF1<0是SKIPIF1<0圖象的一條對(duì)稱軸,則SKIPIF1<0的值可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意SKIPIF1<0,因?yàn)橹本€SKIPIF1<0是SKIPIF1<0圖象的一條對(duì)稱軸,所以SKIPIF1<0,則SKIPIF1<0,對(duì)比選項(xiàng)可知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故選:B.8.已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上的值域是SKIPIF1<0,則a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,要使SKIPIF1<0在區(qū)間SKIPIF1<0上的值域是SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故選:A9.已知函數(shù)SKIPIF1<0在SKIPIF1<0上存在最值,且在SKIPIF1<0上單調(diào),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,則SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上存在最值,則SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào),則SKIPIF1<0,所以SKIPIF1<0其中SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又因?yàn)镾KIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.又因?yàn)镾KIPIF1<02,因此SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.10.如圖,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象的三個(gè)相鄰的交點(diǎn)為A,B,C,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)
A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以相鄰兩對(duì)稱軸間的距離SKIPIF1<0,即周期SKIPIF1<0,所以SKIPIF1<0,排除BD,當(dāng)SKIPIF1<0時(shí),代入SKIPIF1<0,可得SKIPIF1<0,滿足題意,代入SKIPIF1<0,可得SKIPIF1<0,不符合題意,故A正確C錯(cuò)誤.故選:A11.將函數(shù)SKIPIF1<0的圖像向左平移SKIPIF1<0個(gè)單位長(zhǎng)度后得到函數(shù)SKIPIF1<0的圖像,再將SKIPIF1<0的圖像上各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉?lái)的SKIPIF1<0(SKIPIF1<0)倍,得到函數(shù)SKIPIF1<0的圖像,且SKIPIF1<0在區(qū)間SKIPIF1<0上恰有兩個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】法一:由題意,得SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恰有兩個(gè)極值點(diǎn)和兩個(gè)零點(diǎn).結(jié)合圖像知SKIPIF1<0,解得SKIPIF1<0.法二:驗(yàn)證排除法.由題意可知SKIPIF1<0,所以SKIPIF1<0,根據(jù)四個(gè)選項(xiàng)的特點(diǎn),只有選項(xiàng)C中不含SKIPIF1<0,所以只需要驗(yàn)證SKIPIF1<0時(shí)的情況,若SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,結(jié)合圖像知此范圍內(nèi)由兩個(gè)零點(diǎn),一個(gè)極小值點(diǎn),不符合題意,所以SKIPIF1<0,故選C.法三:由題可知,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,分別令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由題意知SKIPIF1<0解得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,分別令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由題意知SKIPIF1<0解得SKIPIF1<0,綜上所述,SKIPIF1<0.故選:C.12.已知函數(shù)SKIPIF1<0,則下列說(shuō)法中正確的是(
)A.若函數(shù)SKIPIF1<0的最小正周期為π,則SKIPIF1<0在SKIPIF1<0上不單調(diào)B.若函數(shù)SKIPIF1<0的最小正周期為π,則直線SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一條對(duì)稱軸C.若函數(shù)SKIPIF1<0在SKIPIF1<0上恰有3個(gè)極值點(diǎn),則SKIPIF1<0D.若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào),則SKIPIF1<0【答案】C【詳解】SKIPIF1<0.對(duì)于A,若SKIPIF1<0的最小正周期為π,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上為增函數(shù),故A錯(cuò)誤;對(duì)于B,由于SKIPIF1<0,則SKIPIF1<0,直線SKIPIF1<0不是SKIPIF1<0圖象的對(duì)稱軸,故B錯(cuò)誤;對(duì)于C,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0在SKIPIF1<0上恰有3個(gè)極值點(diǎn),則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取極值,則有SKIPIF1<0,得SKIPIF1<0,故C正確;對(duì)于D,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0上單調(diào),則SKIPIF1<0,解得SKIPIF1<0,故D錯(cuò)誤.故選:C.13.將函數(shù)SKIPIF1<0圖象上所有點(diǎn)的橫坐標(biāo)縮小為原來(lái)的SKIPIF1<0,再向右平移SKIPIF1<0個(gè)單位長(zhǎng)度,得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的零點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】將函數(shù)SKIPIF1<0圖象上所有點(diǎn)的橫坐標(biāo)縮小為原來(lái)的SKIPIF1<0,得到SKIPIF1<0的圖象,再向右平移SKIPIF1<0個(gè)單位長(zhǎng)度,得到SKIPIF1<0的圖象.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則關(guān)于t的方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不等的實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B14.已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,且SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0,所以函數(shù)SKIPIF1<0的最小正周期是SKIPIF1<0,于是函數(shù)SKIPIF1<0的最小正周期是SKIPIF1<0,因此函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0.由于SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0處取得最小值,于是SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C二、多選題15.已知函數(shù)SKIPIF1<0的部分圖象如圖所示,則下列說(shuō)法正確的是(
)A.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱B.函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱C.函數(shù)SKIPIF1<0在SKIPIF1<0的值域?yàn)镾KIPIF1<0D.將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位,所得函數(shù)為SKIPIF1<0【答案】ACD【詳解】由圖可知SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又函數(shù)圖象最低點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,由題意SKIPIF1<0,所以只能SKIPIF1<0,所以SKIPIF1<0由A選項(xiàng)分析可知SKIPIF1<0,但SKIPIF1<0,從而函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,故A選項(xiàng)正確;但SKIPIF1<0,從而函數(shù)SKIPIF1<0的圖象不關(guān)于SKIPIF1<0對(duì)稱,故B選項(xiàng)錯(cuò)誤;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0所以函數(shù)SKIPIF1<0在SKIPIF1<0的值域?yàn)镾KIPIF1<0,故C選項(xiàng)正確;若將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位,則得到的新的函數(shù)解析式為SKIPIF1<0,故D選項(xiàng)正確.故選:ACD.16.函數(shù)SKIPIF1<0的部分圖象如圖所示,則下列說(shuō)法中正確的是(
)A.SKIPIF1<0B.SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長(zhǎng)度后得到的新函數(shù)是偶函數(shù)C.SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長(zhǎng)度后得到的新函數(shù)是奇函數(shù)D.若方程SKIPIF1<0在SKIPIF1<0上有且只有6個(gè)根,則SKIPIF1<0【答案】ACD【詳解】對(duì)于A項(xiàng):由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0的圖象過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0的單調(diào)遞增區(qū)間內(nèi),所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故A項(xiàng)正確.對(duì)于B、C項(xiàng):SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長(zhǎng)度后得到SKIPIF1<0SKIPIF1<0,為奇函數(shù),故B項(xiàng)錯(cuò)誤,C項(xiàng)正確.對(duì)于D項(xiàng):由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,該方程在SKIPIF1<0上有SKIPIF1<0個(gè)根,從小到大依次設(shè)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若存在第SKIPIF1<0個(gè)根,則SKIPIF1<0,所以SKIPIF1<0.故D項(xiàng)正確.故選:ACD.17.已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0為偶函數(shù)B.SKIPIF1<0是SKIPIF1<0的一個(gè)單調(diào)遞增區(qū)間C.SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】ACD【詳解】因?yàn)镾KIPIF1<0的定義域?yàn)镾KIPIF1<0,關(guān)于原點(diǎn)對(duì)稱,且SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),故A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0不是函數(shù)的遞增區(qū)間,故B不正確;SKIPIF1<0,故C正確;因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,同理,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,故D正確.故選:ACD.18.已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0軸對(duì)稱B.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱C.SKIPIF1<0的所有零點(diǎn)為SKIPIF1<0D.SKIPIF1<0是以SKIPIF1<0為周期的函數(shù)【答案】AC【詳解】對(duì)于A:因?yàn)镾KIPIF1<0,所以SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0軸對(duì)稱,故A正確;對(duì)于B:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的圖象不關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,B錯(cuò)誤.對(duì)于C:因?yàn)镾KIPIF1<0,注意到SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的所有零點(diǎn)為SKIPIF1<0,故C正確;對(duì)于D:因?yàn)镾KIPIF1<0,所以SKIPIF1<0不是SKIPIF1<0的周期,故D錯(cuò)誤;故選:AC.19.已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,它們的最小正周期均為SKIPIF1<0,SKIPIF1<0的一個(gè)零點(diǎn)為SKIPIF1<0,則(
)A.SKIPIF1<0的最大值為2B.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱C.SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上均單調(diào)遞增D.將SKIPIF1<0圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度可以得到SKIPIF1<0的圖象【答案】BCD【詳解】因?yàn)镾KIPIF1<0的最小正周期為SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0的一個(gè)零點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,故A錯(cuò)誤;又SKIPIF1<0,故SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,B正確;對(duì)于SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,對(duì)于SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 寧波市北侖區(qū)郭巨街道招考7名編外人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 國(guó)網(wǎng)湖北省電力限公司2025年高校畢業(yè)生第二批次招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024通信行業(yè)信息安全保密管理服務(wù)合同3篇
- 四川省事業(yè)單位人才招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 南通濱海園區(qū)控股發(fā)展限公司招考工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 二零二五年度建筑工程施工合同的安全管理3篇
- 二零二五年度集裝箱運(yùn)輸安全管理合同3篇
- 內(nèi)蒙古自治區(qū)總工會(huì)所屬事業(yè)單位公開(kāi)招聘10人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 二零二五年度酒品拍賣代理合同規(guī)范范本3篇
- 2025年度軟件授權(quán)合同續(xù)簽及版本升級(jí)協(xié)議3篇
- 英語(yǔ)-山東省淄博市2024-2025學(xué)年第一學(xué)期高三期末摸底質(zhì)量檢測(cè)試題和答案
- 億歐智庫(kù)-2024中國(guó)智能駕駛城區(qū)NOA功能測(cè)評(píng)報(bào)告
- 甘肅2024年甘肅培黎職業(yè)學(xué)院引進(jìn)高層次人才歷年參考題庫(kù)(頻考版)含答案解析
- 水利水電工程安全管理制度例文(三篇)
- GA/T 1280-2024銀行自助設(shè)備安全性規(guī)范
- 2025年超星爾雅學(xué)習(xí)通《勞動(dòng)通論》章節(jié)測(cè)試題庫(kù)及參考答案(培優(yōu))
- 2024預(yù)防流感課件完整版
- 新疆烏魯木齊市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版質(zhì)量測(cè)試(上學(xué)期)試卷及答案
- 人教版2024-2025學(xué)年第一學(xué)期八年級(jí)物理期末綜合復(fù)習(xí)練習(xí)卷(含答案)
- 靜脈治療專科護(hù)士競(jìng)聘
- 特殊教育多媒體教室方案
評(píng)論
0/150
提交評(píng)論