貴州省黎平縣第三中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
貴州省黎平縣第三中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
貴州省黎平縣第三中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
貴州省黎平縣第三中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
貴州省黎平縣第三中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

貴州省黎平縣第三中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.122.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.3.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()4.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.5.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲6.已知函數(shù),若關(guān)于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.7.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)8.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.9.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.10.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)11.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i12.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標(biāo)原點,若為等邊三角形,則雙曲線的離心率為______.14.設(shè)是公差不為0的等差數(shù)列的前n項和,且,則______.15.曲線在處的切線方程是_________.16.曲線在處的切線的斜率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;(3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,18.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.19.(12分)已知函數(shù),.(1)當(dāng)時,判斷是否是函數(shù)的極值點,并說明理由;(2)當(dāng)時,不等式恒成立,求整數(shù)的最小值.20.(12分)某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.21.(12分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關(guān);安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內(nèi)的交通違章情況進行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中22.(10分)4月23日是“世界讀書日”,某中學(xué)開展了一系列的讀書教育活動.學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學(xué)生只能參加一個讀書小組)學(xué)生抽取12名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學(xué)生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學(xué)生中隨機抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

中位數(shù)指一串?dāng)?shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.2、A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.3、D【解析】

由題意利用兩個向量坐標(biāo)形式的運算法則,兩個向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標(biāo)形式的運算,兩個向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.4、C【解析】令圓的半徑為1,則,故選C.5、D【解析】

根據(jù)雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.6、D【解析】

討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時,;當(dāng)時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力.7、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.8、D【解析】

先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設(shè)切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.9、D【解析】

三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.10、C【解析】

求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.11、A【解析】

由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.12、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).14、18【解析】

將已知已知轉(zhuǎn)化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質(zhì)以及求和,考查運算求解能力,屬于基礎(chǔ)題.15、【解析】

利用導(dǎo)數(shù)的運算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【點睛】本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、【解析】

求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】

(1)根據(jù)散點圖的特點,可得更適合;(2)先建立關(guān)于的回歸方程,再得出關(guān)于的回歸方程;(3)寫出函數(shù)關(guān)系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據(jù)題意,設(shè),則煤氣用量,當(dāng)且僅當(dāng)時,等號成立,即時,煤氣用量最小.【點睛】此題考查根據(jù)題意求回歸方程,利用線性回歸方程的求法得解,結(jié)合基本不等式求最值.18、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當(dāng)時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當(dāng)且僅當(dāng)取等號).故在上為增函數(shù).①當(dāng)時,,故在上為增函數(shù),所以恒成立,故符合題意;②當(dāng)時,由于,,根據(jù)零點存在定理,必存在,使得,由于在上為增函數(shù),故當(dāng)時,,故在上為減函數(shù),所以當(dāng)時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當(dāng)時,,故當(dāng)時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復(fù)雜,本題屬于難題.19、(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】

(1)將直接代入,對求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時,.令,則當(dāng)時,.即在內(nèi)為減函數(shù),且∴當(dāng)時,;當(dāng)時,.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當(dāng)時,不等式成立,即.即證令則∴當(dāng)時,;當(dāng)時,.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時,.即當(dāng)時,不等式成立.綜上,整數(shù)的最小值為.【點睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問題,為難題20、(1)(2)【解析】

(1)根據(jù)題意即可寫出該批次產(chǎn)品長度誤差的絕對值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標(biāo)準(zhǔn)長度的概率為0.4,即可求出隨機抽取2件產(chǎn)品,都不是標(biāo)準(zhǔn)長度產(chǎn)品的概率,由對立事件的概率公式即可得到隨機抽取2件產(chǎn)品,至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當(dāng)不符合要求時,設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計為.(2)由(1)可知任取一件產(chǎn)品是標(biāo)準(zhǔn)長度的概率為0.4,設(shè)至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率為,由題意,又,解得,所以符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發(fā)生的概率公式的應(yīng)用,對立事件的概率公式的應(yīng)用,解題關(guān)鍵是對題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.21、,概率為;列聯(lián)表詳見解析,有的把握認為交通安全意識與性別有關(guān);.【解析】

根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結(jié)論;用分層抽樣法求得抽取各分數(shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強的概率根據(jù)題意可知,安全意識強的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論