版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁,共3頁華僑大學(xué)《深度學(xué)習(xí)實(shí)驗(yàn)》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的圖像生成任務(wù)中,變分自編碼器(VAE)是一種常用的模型。假設(shè)要使用VAE生成新的圖像,以下關(guān)于VAE的描述,正確的是:()A.VAE通過學(xué)習(xí)數(shù)據(jù)的潛在分布來生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質(zhì)量不如生成對(duì)抗網(wǎng)絡(luò)(GAN),因此在實(shí)際應(yīng)用中逐漸被淘汰C.VAE可以在生成圖像的同時(shí)對(duì)圖像進(jìn)行壓縮和編碼,節(jié)省存儲(chǔ)空間D.VAE只能用于生成簡(jiǎn)單的圖像,如數(shù)字和幾何圖形,無法生成復(fù)雜的自然圖像2、假設(shè)在一個(gè)智能教育系統(tǒng)中,需要利用人工智能為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑和資源推薦。為了準(zhǔn)確評(píng)估學(xué)生的學(xué)習(xí)狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學(xué)習(xí)行為數(shù)據(jù)和聚類分析B.知識(shí)掌握程度數(shù)據(jù)和回歸分析C.學(xué)習(xí)偏好數(shù)據(jù)和分類算法D.以上都是3、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)開發(fā)了一個(gè)用于醫(yī)療診斷的人工智能模型,以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不正確的?()A.解釋模型的決策過程和依據(jù),有助于提高醫(yī)生對(duì)診斷結(jié)果的信任度B.特征重要性分析可以幫助理解哪些輸入特征對(duì)診斷結(jié)果影響較大C.深度學(xué)習(xí)模型由于其復(fù)雜性,無法進(jìn)行任何形式的解釋D.開發(fā)具有可解釋性的人工智能模型對(duì)于醫(yī)療等關(guān)鍵領(lǐng)域至關(guān)重要4、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對(duì)抗生成網(wǎng)絡(luò)D.以上都是5、知識(shí)圖譜在人工智能中用于整合和表示知識(shí)。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜構(gòu)建的描述,正確的是:()A.可以隨意收集和整合信息,無需對(duì)知識(shí)的準(zhǔn)確性和可靠性進(jìn)行驗(yàn)證B.知識(shí)圖譜的結(jié)構(gòu)和關(guān)系定義不重要,只要包含大量的數(shù)據(jù)就行C.構(gòu)建知識(shí)圖譜需要對(duì)知識(shí)進(jìn)行精心的組織和關(guān)聯(lián),以支持有效的查詢和推理D.知識(shí)圖譜一旦構(gòu)建完成,就無需更新和維護(hù),因?yàn)橹R(shí)是固定不變的6、人工智能在醫(yī)療影像診斷中的輔助作用越來越受到重視。假設(shè)一個(gè)醫(yī)生正在借助人工智能系統(tǒng)輔助診斷X光片,以下關(guān)于醫(yī)療影像診斷中人工智能的描述,正確的是:()A.人工智能系統(tǒng)的診斷結(jié)果可以完全替代醫(yī)生的判斷,醫(yī)生無需再進(jìn)行分析B.醫(yī)生應(yīng)該將人工智能系統(tǒng)的診斷結(jié)果作為唯一參考,忽略自己的臨床經(jīng)驗(yàn)C.人工智能系統(tǒng)可以提供輔助信息和提示,幫助醫(yī)生更準(zhǔn)確地診斷,但最終決策仍由醫(yī)生做出D.醫(yī)療影像診斷中的人工智能技術(shù)還不夠成熟,不能為醫(yī)生提供任何有價(jià)值的幫助7、在人工智能的藝術(shù)創(chuàng)作中,以下哪種方式可能會(huì)引發(fā)關(guān)于作品原創(chuàng)性和版權(quán)的爭(zhēng)議?()A.基于已有作品的風(fēng)格進(jìn)行模仿創(chuàng)作B.使用人工智能生成全新的藝術(shù)作品C.人類藝術(shù)家與人工智能共同創(chuàng)作D.以上都有可能8、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個(gè)特定領(lǐng)域構(gòu)建知識(shí)圖譜,以下關(guān)于數(shù)據(jù)來源的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報(bào)告,確保知識(shí)的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗(yàn)和知識(shí),以及相關(guān)的數(shù)據(jù)庫和文檔D.隨機(jī)選擇一些數(shù)據(jù)來源,不進(jìn)行篩選和評(píng)估9、人工智能中的模型壓縮技術(shù)用于減少模型的參數(shù)和計(jì)算量。假設(shè)要在資源受限的設(shè)備上部署一個(gè)大型的神經(jīng)網(wǎng)絡(luò)模型,以下關(guān)于模型壓縮的描述,正確的是:()A.剪枝技術(shù)通過刪除不重要的神經(jīng)元和連接來壓縮模型,不會(huì)影響模型性能B.量化技術(shù)將模型的參數(shù)從浮點(diǎn)數(shù)轉(zhuǎn)換為整數(shù),會(huì)導(dǎo)致較大的精度損失C.知識(shí)蒸餾將復(fù)雜模型的知識(shí)轉(zhuǎn)移到簡(jiǎn)單模型中,但效果不如直接使用復(fù)雜模型D.模型壓縮技術(shù)會(huì)犧牲一定的模型性能,但可以顯著提高模型的部署效率10、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動(dòng)作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動(dòng)作B.始終選擇最優(yōu)動(dòng)作,不進(jìn)行探索C.隨機(jī)選擇動(dòng)作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用11、假設(shè)要開發(fā)一個(gè)能夠在復(fù)雜環(huán)境中自主導(dǎo)航的智能機(jī)器人,例如在倉庫中搬運(yùn)貨物,以下哪個(gè)模塊對(duì)于機(jī)器人的決策和行動(dòng)至關(guān)重要?()A.環(huán)境感知模塊B.路徑規(guī)劃模塊C.運(yùn)動(dòng)控制模塊D.以上都是12、人工智能中的自動(dòng)機(jī)器學(xué)習(xí)(AutoML)旨在自動(dòng)化模型的選擇和調(diào)優(yōu)過程。假設(shè)一個(gè)企業(yè)沒有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來構(gòu)建模型。以下關(guān)于自動(dòng)機(jī)器學(xué)習(xí)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.AutoML可以自動(dòng)搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗(yàn)豐富的數(shù)據(jù)科學(xué)家手動(dòng)構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性13、在一個(gè)利用人工智能進(jìn)行供應(yīng)鏈優(yōu)化的項(xiàng)目中,例如預(yù)測(cè)需求、優(yōu)化庫存管理和物流路徑規(guī)劃,以下哪種能力是人工智能系統(tǒng)需要具備的關(guān)鍵特性?()A.大規(guī)模數(shù)據(jù)處理能力B.動(dòng)態(tài)適應(yīng)能力C.全局優(yōu)化能力D.以上都是14、在人工智能的數(shù)據(jù)分析中,假設(shè)要從大量的數(shù)據(jù)中發(fā)現(xiàn)潛在的模式和關(guān)系,以下關(guān)于數(shù)據(jù)分析方法的描述,正確的是:()A.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡(jiǎn)單的關(guān)聯(lián)關(guān)系,無法處理復(fù)雜的數(shù)據(jù)結(jié)構(gòu)B.聚類分析可以將數(shù)據(jù)自動(dòng)分為不同的類別,但類別數(shù)量需要事先指定C.主成分分析能夠降低數(shù)據(jù)的維度,同時(shí)保留主要的信息D.以上數(shù)據(jù)分析方法在實(shí)際應(yīng)用中通常單獨(dú)使用,不需要結(jié)合其他方法15、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個(gè)性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說法,錯(cuò)誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),為其提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實(shí)現(xiàn)教育的自動(dòng)化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問題16、在人工智能的應(yīng)用中,自動(dòng)駕駛是一個(gè)具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動(dòng)駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全的駕駛決策,需要融合多種傳感器的數(shù)據(jù)。以下關(guān)于傳感器融合的方法,哪一項(xiàng)是不正確的?()A.使用卡爾曼濾波將不同傳感器的數(shù)據(jù)進(jìn)行融合,以獲得更準(zhǔn)確的車輛狀態(tài)估計(jì)B.簡(jiǎn)單地將各個(gè)傳感器的數(shù)據(jù)相加,作為最終的決策依據(jù)C.基于深度學(xué)習(xí)的方法,自動(dòng)學(xué)習(xí)不同傳感器數(shù)據(jù)之間的關(guān)系D.采用加權(quán)平均的方式,根據(jù)傳感器的可靠性為其分配不同的權(quán)重17、在人工智能的推薦系統(tǒng)中,為用戶提供個(gè)性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個(gè)電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項(xiàng)是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機(jī)推薦D.混合推薦18、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)19、在人工智能的語音識(shí)別任務(wù)中,需要將人類的語音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語速和背景噪音下的語音,為了提高語音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語音的主要部分D.不進(jìn)行任何預(yù)處理,直接對(duì)原始語音進(jìn)行識(shí)別20、在強(qiáng)化學(xué)習(xí)中,“Q-learning”算法通過估計(jì)什么來進(jìn)行決策?()A.狀態(tài)價(jià)值B.動(dòng)作價(jià)值C.策略D.獎(jiǎng)勵(lì)21、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時(shí)實(shí)現(xiàn)模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個(gè)人工智能模型,同時(shí)保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機(jī)構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過程中不存在通信開銷和安全風(fēng)險(xiǎn)C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡(jiǎn)單的模型,對(duì)于大規(guī)模和復(fù)雜的任務(wù)不適用22、在人工智能的模型評(píng)估中,需要使用多種指標(biāo)來衡量模型的性能。假設(shè)評(píng)估一個(gè)分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,是常用的評(píng)估指標(biāo)之一B.召回率衡量了被正確識(shí)別的正例在實(shí)際正例中的比例C.F1值綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說明模型在實(shí)際應(yīng)用中表現(xiàn)良好,無需考慮其他指標(biāo)23、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體做出最優(yōu)決策。假設(shè)一個(gè)智能體在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí),以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.智能體通過隨機(jī)嘗試不同的動(dòng)作來學(xué)習(xí),不需要任何獎(jiǎng)勵(lì)反饋B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對(duì)智能體的學(xué)習(xí)效果沒有影響,只要有足夠的訓(xùn)練時(shí)間就能學(xué)會(huì)最優(yōu)策略C.強(qiáng)化學(xué)習(xí)算法能夠保證智能體在有限的時(shí)間內(nèi)找到絕對(duì)最優(yōu)的決策策略D.智能體在學(xué)習(xí)過程中會(huì)不斷調(diào)整策略以最大化累積獎(jiǎng)勵(lì)24、在人工智能的目標(biāo)檢測(cè)任務(wù)中,假設(shè)要在圖像中準(zhǔn)確檢測(cè)出多個(gè)不同類別的物體,以下關(guān)于目標(biāo)檢測(cè)算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標(biāo)檢測(cè)算法在復(fù)雜場(chǎng)景下的性能優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNN,能夠?qū)崿F(xiàn)高精度的檢測(cè)C.目標(biāo)檢測(cè)算法的性能只取決于模型的復(fù)雜度,與訓(xùn)練數(shù)據(jù)無關(guān)D.所有的目標(biāo)檢測(cè)算法都能夠?qū)崟r(shí)處理視頻中的目標(biāo)檢測(cè)任務(wù)25、在人工智能的倫理和社會(huì)影響方面,存在許多需要思考的問題。假設(shè)一個(gè)基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡(jiǎn)歷和面試表現(xiàn)進(jìn)行篩選。以下關(guān)于這種系統(tǒng)可能帶來的潛在問題,哪一項(xiàng)是最值得關(guān)注的?()A.系統(tǒng)可能會(huì)因?yàn)閿?shù)據(jù)偏差而對(duì)某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過程過于透明,導(dǎo)致企業(yè)招聘策略被競(jìng)爭(zhēng)對(duì)手輕易了解C.系統(tǒng)可能會(huì)過于依賴簡(jiǎn)歷信息,而忽略了候選人的實(shí)際能力和潛力D.系統(tǒng)的運(yùn)行成本過高,對(duì)企業(yè)造成經(jīng)濟(jì)負(fù)擔(dān)26、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是27、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)一個(gè)醫(yī)療決策支持系統(tǒng)基于人工智能模型給出診斷建議。以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可解釋性有助于醫(yī)生和患者理解模型的決策依據(jù),增加信任度B.一些復(fù)雜的深度學(xué)習(xí)模型由于其內(nèi)部運(yùn)作的復(fù)雜性,往往具有較低的可解釋性C.為了提高模型的性能,可以犧牲一定的可解釋性D.可解釋性對(duì)于所有類型的人工智能應(yīng)用都是同等重要的,沒有優(yōu)先級(jí)之分28、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)要構(gòu)建一個(gè)能夠回答用戶各種問題的智能客服系統(tǒng),需要考慮以下幾個(gè)方面。以下關(guān)于提高回答準(zhǔn)確性的方法,哪一項(xiàng)是最重要的?()A.建立一個(gè)龐大的知識(shí)庫,涵蓋各種常見問題和答案B.運(yùn)用自然語言生成技術(shù),生成更加自然流暢的回答C.不斷收集用戶的反饋,對(duì)系統(tǒng)進(jìn)行優(yōu)化和改進(jìn)D.使用多種語言模型進(jìn)行融合,提高回答的多樣性29、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個(gè)大型商場(chǎng)部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項(xiàng)是不準(zhǔn)確的?()A.實(shí)時(shí)檢測(cè)異常行為B.自動(dòng)識(shí)別人員身份C.預(yù)測(cè)潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護(hù)問題30、情感分析是自然語言處理中的一個(gè)重要任務(wù)。以下關(guān)于情感分析的描述,不準(zhǔn)確的是()A.情感分析旨在判斷文本所表達(dá)的情感傾向,如積極、消極或中性B.可以基于詞典、機(jī)器學(xué)習(xí)算法或深度學(xué)習(xí)模型來進(jìn)行情感分析C.情感分析在社交媒體監(jiān)測(cè)、客戶反饋分析等方面有廣泛的應(yīng)用D.情感分析的結(jié)果總是準(zhǔn)確無誤的,不受文本的復(fù)雜性和多義性影響二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的Scikit-learn庫,實(shí)現(xiàn)線性判別分析(LDA)對(duì)數(shù)據(jù)集進(jìn)行降維和分類,比較與主成分分析(PCA)的效果。2、(本題5分)使用Python的Scikit-learn庫,實(shí)現(xiàn)支持向量回歸(SVR)算法對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè)。通過調(diào)整核函數(shù)和超參數(shù),提高預(yù)測(cè)的準(zhǔn)確性。3、(本題5分)借助遺傳算法優(yōu)化一個(gè)機(jī)器人的運(yùn)動(dòng)路徑,使其在最短時(shí)間內(nèi)到達(dá)目標(biāo)位置,同時(shí)避免障礙物。4、(本題5分)使用Python的Keras庫,實(shí)現(xiàn)一個(gè)基于長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)的股票價(jià)格預(yù)測(cè)模型。結(jié)合技術(shù)分析指標(biāo)和公司財(cái)務(wù)數(shù)據(jù),對(duì)未來一段時(shí)間的股票價(jià)格走勢(shì)進(jìn)行預(yù)測(cè)。5、(本題5分)使用聚類算法對(duì)社交網(wǎng)絡(luò)用戶行為數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國(guó)人壽保險(xiǎn)股份限公司嘉興分公司招聘15人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年重慶璧山區(qū)招聘事業(yè)單位人員擬聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年四川省金陽縣事業(yè)單位招聘96人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年四川省事業(yè)單位歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年四川遂寧高新區(qū)部分事業(yè)單位招聘工作人員32人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年四川省資中縣事業(yè)單位招聘157人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年2025年菏澤市曹縣結(jié)合事業(yè)單位公開招聘征集普通高等院校本科畢業(yè)生8人入伍高頻重點(diǎn)提升(共500題)附帶答案詳解
- 花鳥市場(chǎng)寵物店租賃合同
- 旅游服務(wù)提供商合作協(xié)議
- 智能家居系統(tǒng)采購招投標(biāo)公函
- 護(hù)士長(zhǎng)如何做好時(shí)間管理
- 康復(fù)科進(jìn)修匯報(bào)
- 2023風(fēng)電機(jī)組預(yù)應(yīng)力混凝土塔筒與基礎(chǔ)結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)
- 3D打印技術(shù)在醫(yī)療領(lǐng)域的應(yīng)用
- 2024年輔警考試公基常識(shí)300題(附解析)
- 倉庫班長(zhǎng)年終總結(jié)
- 北京市海淀區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期期末英語試題
- LNG液化天然氣項(xiàng)目事故后果模擬分析評(píng)價(jià)
- 2024年湖北省漢江國(guó)有資本投資集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 脂肪肝健康教育-課件
- 廣州市九區(qū)聯(lián)考2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(原卷版)
評(píng)論
0/150
提交評(píng)論