版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建省政和一中高三第三次測評數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦距為,若的漸近線上存在點,使得經(jīng)過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.2.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件3.已知正方體的棱長為2,點在線段上,且,平面經(jīng)過點,則正方體被平面截得的截面面積為()A. B. C. D.4.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.5.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.6.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}7.已知三棱柱的所有棱長均相等,側(cè)棱平面,過作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關(guān)系為()A. B.C. D.8.設(shè)過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則()A. B. C. D.9.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.10.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.11.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.12.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.14.已知等差數(shù)列的前n項和為,,,則=_______.15.若,則的最小值為________.16.函數(shù)的值域為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為貫徹十九大報告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.19.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:20.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.21.(12分)某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關(guān)?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63522.(10分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.2、D【解析】
對于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應(yīng)用,涉及知識點有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡單題.3、B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B【點睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.4、A【解析】
先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關(guān)系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.5、A【解析】
根據(jù)實數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.6、D【解析】
解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎(chǔ)題.7、B【解析】
利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設(shè)三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點睛】本題主要考查了空間中兩直線所成角的計算,考查了學生的作圖,用圖能力,體現(xiàn)了學生直觀想象的核心素養(yǎng).8、C【解析】
畫出圖形,將三角形面積比轉(zhuǎn)為線段長度比,進而轉(zhuǎn)為坐標的表達式。寫出直線方程,再聯(lián)立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長的比例關(guān)系,進而聯(lián)立方程組求解,是一道不錯的綜合題.9、A【解析】
根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結(jié)合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對空間想象能力要求較高,屬于中檔題.10、C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.11、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運算能力,屬于基礎(chǔ)題.12、C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.14、【解析】
利用求出公差,結(jié)合等差數(shù)列的通項公式可求.【詳解】設(shè)公差為,因為,所以,即.所以.故答案為:【點睛】本題主要考查等差數(shù)列通項公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學運算的核心素養(yǎng).15、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件。【詳解】由題意,,當且僅當時等號成立,所以,當且僅當時取等號,所以當時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件。16、【解析】
利用換元法,得到,利用導數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】
設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設(shè)事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結(jié)果;(2)設(shè)事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據(jù)題意直接判斷和的大小即可.【詳解】設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設(shè)事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設(shè)事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點睛】本題考查概率的求法,考查互斥事件加法公式、相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,是中等題.18、(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導數(shù)找到與即可證明.【詳解】(1).①當時,恒成立,當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù).②當時,,.當時,;當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當時,,則在上是減函數(shù).④當時,,當時,;當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當,時,,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問題,考查學生邏輯推理能力,是一道較難的題.19、(1)(2)見解析【解析】
(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結(jié)合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質(zhì)得當且僅當即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當且僅當時等號成立,即,所以.法2:由得,,當且僅當時“=”成立.【點睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.20、(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設(shè)C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 特種金融債券抵押合同
- 2025年辦公室文秘工作計劃例文(2篇)
- 事業(yè)單位車改方案范例(2篇)
- 機關(guān)招待所管理規(guī)定范文(2篇)
- 2025年高三誓師大會發(fā)言稿(4篇)
- 小區(qū)地下車位管理規(guī)定范文(2篇)
- 2025年春季開學演講稿范文(2篇)
- 2025年企業(yè)文化工作計劃模版(四篇)
- 2025年三八婦女節(jié)代表發(fā)言稿模版(3篇)
- 2025年學生會生活部工作計劃例文(6篇)
- 檢驗檢測服務(wù)公司市場營銷計劃
- 醫(yī)務(wù)人員外出進修流程圖
- DB32∕T 2349-2013 楊樹一元立木材積表
- 昌樂二中271高效課堂培訓與評價ppt課件
- 顫病(帕金森?。┲嗅t(yī)護理常規(guī)
- 豬場名詞及指標講義
- 果膠項目商業(yè)計劃書(模板范本)
- 旋挖鉆成孔掏渣筒沉渣處理施工工藝
- T∕CHTS 10040-2021 公路無機結(jié)合料穩(wěn)定粒料基層振動法施工技術(shù)指南
- 集團后備人才培養(yǎng)方案
- 腦卒中偏癱患者早期康復護理現(xiàn)狀(一)
評論
0/150
提交評論