下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁江蘇農(nóng)林職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)算法與實(shí)踐》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要對(duì)一個(gè)復(fù)雜的數(shù)據(jù)集進(jìn)行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對(duì)非線性結(jié)構(gòu)不敏感C.t-分布隨機(jī)鄰域嵌入(t-SNE),能夠保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu),但計(jì)算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)和分析目的選擇合適的降維策略2、在一個(gè)多標(biāo)簽分類問題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類別。例如,一篇文章可能同時(shí)涉及科技、娛樂和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類任務(wù)?()A.將多標(biāo)簽問題轉(zhuǎn)化為多個(gè)二分類問題,分別進(jìn)行預(yù)測(cè)B.使用一個(gè)單一的分類器,輸出多個(gè)概率值表示屬于各個(gè)類別的可能性C.對(duì)每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類器D.以上方法都不可行,多標(biāo)簽分類問題無法通過機(jī)器學(xué)習(xí)解決3、想象一個(gè)文本分類的任務(wù),需要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等??紤]到詞匯的多樣性和語義的復(fù)雜性。以下哪種詞向量表示方法可能是最適合的?()A.One-Hot編碼,簡單直觀,但向量維度高且稀疏B.詞袋模型(BagofWords),忽略詞序但計(jì)算簡單C.分布式詞向量,如Word2Vec或GloVe,能夠捕捉詞與詞之間的語義關(guān)系,但對(duì)多義詞處理有限D(zhuǎn).基于Transformer的預(yù)訓(xùn)練語言模型生成的詞向量,具有強(qiáng)大的語言理解能力,但計(jì)算成本高4、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于預(yù)測(cè)股票價(jià)格的機(jī)器學(xué)習(xí)模型,需要考慮市場(chǎng)的動(dòng)態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時(shí)間序列數(shù)據(jù)?()A.長短時(shí)記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機(jī)制B.門控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機(jī)森林與自回歸移動(dòng)平均模型(ARMA)的融合D.以上模型都有可能5、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化6、在進(jìn)行模型評(píng)估時(shí),除了準(zhǔn)確率、召回率等指標(biāo),還可以使用混淆矩陣來更全面地了解模型的性能。假設(shè)我們有一個(gè)二分類模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.混淆矩陣的行表示真實(shí)類別,列表示預(yù)測(cè)類別B.真陽性(TruePositive,TP)表示實(shí)際為正例且被預(yù)測(cè)為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實(shí)際為正例但被預(yù)測(cè)為負(fù)例的樣本數(shù)量D.混淆矩陣只能用于二分類問題,不能用于多分類問題7、假設(shè)正在開發(fā)一個(gè)用于圖像分割的機(jī)器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評(píng)估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用8、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類問題,我們需要選擇合適的算法來提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯9、在一個(gè)信用評(píng)估模型中,我們需要根據(jù)用戶的個(gè)人信息、財(cái)務(wù)狀況等數(shù)據(jù)來判斷其信用風(fēng)險(xiǎn)。數(shù)據(jù)集存在類別不平衡的問題,即信用良好的用戶數(shù)量遠(yuǎn)遠(yuǎn)多于信用不良的用戶。為了解決這個(gè)問題,以下哪種方法是不合適的?()A.對(duì)少數(shù)類樣本進(jìn)行過采樣,增加其數(shù)量B.對(duì)多數(shù)類樣本進(jìn)行欠采樣,減少其數(shù)量C.為不同類別的樣本設(shè)置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進(jìn)行訓(xùn)練,忽略類別不平衡10、對(duì)于一個(gè)高維度的數(shù)據(jù),在進(jìn)行特征選擇時(shí),以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以11、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),我們通常需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理。假設(shè)我們有一個(gè)包含大量缺失值的數(shù)據(jù)集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機(jī)值填充缺失值D.不處理缺失值,直接使用原始數(shù)據(jù)12、在集成學(xué)習(xí)中,Adaboost算法通過調(diào)整樣本的權(quán)重來訓(xùn)練多個(gè)弱分類器。如果一個(gè)樣本在之前的分類器中被錯(cuò)誤分類,它的權(quán)重會(huì)()A.保持不變B.減小C.增大D.隨機(jī)變化13、在機(jī)器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測(cè)一個(gè)城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.對(duì)原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計(jì)算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對(duì)目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進(jìn)行一次,后續(xù)不需要再進(jìn)行調(diào)整和優(yōu)化14、在一個(gè)強(qiáng)化學(xué)習(xí)場(chǎng)景中,智能體需要在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí)最優(yōu)策略。如果環(huán)境的獎(jiǎng)勵(lì)信號(hào)稀疏,以下哪種技術(shù)可以幫助智能體更好地學(xué)習(xí)?()A.獎(jiǎng)勵(lì)塑造B.策略梯度估計(jì)的改進(jìn)C.經(jīng)驗(yàn)回放D.以上技術(shù)都可以15、在進(jìn)行特征工程時(shí),如果特征之間存在共線性,即一個(gè)特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對(duì)特征進(jìn)行主成分分析C.對(duì)特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)說明機(jī)器學(xué)習(xí)在健身運(yùn)動(dòng)中的個(gè)性化方案。2、(本題5分)解釋機(jī)器學(xué)習(xí)在體育數(shù)據(jù)分析中的應(yīng)用。3、(本題5分)談?wù)勓h(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在處理序列數(shù)據(jù)時(shí)的優(yōu)勢(shì)和局限性。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)論述機(jī)器學(xué)習(xí)中的強(qiáng)化學(xué)習(xí)在自動(dòng)駕駛中的應(yīng)用。強(qiáng)化學(xué)習(xí)在自動(dòng)駕駛中具有潛在的應(yīng)用價(jià)值,分析其原理和應(yīng)用場(chǎng)景。2、(本題5分)機(jī)器學(xué)習(xí)中的支持向量機(jī)(SVM)有哪些特點(diǎn)?結(jié)合具體任務(wù),分析其優(yōu)勢(shì)和局限性。3、(本題5分)論述機(jī)器學(xué)習(xí)在礦業(yè)中的礦產(chǎn)資源勘探中的應(yīng)用,分析其對(duì)礦業(yè)可持續(xù)發(fā)展的意義。4、(本題5分)探討機(jī)器學(xué)習(xí)在智能交通中的擁堵預(yù)測(cè)與緩解。機(jī)器學(xué)習(xí)可以預(yù)測(cè)交通擁堵并提供緩解策略,分析其方法和挑戰(zhàn)。5、(本題5分)分析深度學(xué)習(xí)中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第5單元 走向近代【考題猜想】(純?cè)囶})-2023-2024學(xué)年九年級(jí)歷史上學(xué)期期中考點(diǎn)大串講(部編版)
- 課題申報(bào)參考:面向最后一公里配送的無人機(jī)集貨中心選址及任務(wù)分配研究
- 二零二五年度米廠水稻種植與農(nóng)村電商合作項(xiàng)目合同4篇
- 2025年度餐飲店承包經(jīng)營與食品安全責(zé)任合同
- 2025年度個(gè)人虛擬形象設(shè)計(jì)制作合同樣本4篇
- 2025年度二零二五年度木材加工廢棄物處理合同規(guī)范4篇
- 二零二五版木制托盤庫存管理與采購合同4篇
- 2025年度個(gè)人貨運(yùn)車輛保險(xiǎn)合同范本大全3篇
- 二零二五年度玻璃瓶罐生產(chǎn)與銷售采購合同3篇
- 2025年度文化旅游項(xiàng)目承包商擔(dān)保合同范本4篇
- 《心態(tài)與思維模式》課件
- 物流服務(wù)項(xiàng)目的投標(biāo)書
- C語言程序設(shè)計(jì)(慕課版 第2版)PPT完整全套教學(xué)課件
- 行業(yè)會(huì)計(jì)比較(第三版)PPT完整全套教學(xué)課件
- 值機(jī)業(yè)務(wù)與行李運(yùn)輸實(shí)務(wù)(第3版)高職PPT完整全套教學(xué)課件
- 高考英語語法填空專項(xiàng)訓(xùn)練(含解析)
- 危險(xiǎn)化學(xué)品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化課件
- 巨鹿二中骨干教師個(gè)人工作業(yè)績材料
- 《美的歷程》導(dǎo)讀課件
- 心電圖 (史上最完美)課件
- HGT 20525-2006 化學(xué)工業(yè)管式爐傳熱計(jì)算設(shè)計(jì)規(guī)定
評(píng)論
0/150
提交評(píng)論