江西警察學(xué)院《大數(shù)據(jù)分析方法課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
江西警察學(xué)院《大數(shù)據(jù)分析方法課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
江西警察學(xué)院《大數(shù)據(jù)分析方法課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
江西警察學(xué)院《大數(shù)據(jù)分析方法課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
江西警察學(xué)院《大數(shù)據(jù)分析方法課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁(yè),共3頁(yè)江西警察學(xué)院《大數(shù)據(jù)分析方法課程設(shè)計(jì)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在大數(shù)據(jù)的處理中,數(shù)據(jù)融合是將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起的過程。假設(shè)要將來自不同傳感器的環(huán)境監(jiān)測(cè)數(shù)據(jù)進(jìn)行融合,以獲得更全面和準(zhǔn)確的環(huán)境狀況評(píng)估。以下哪種數(shù)據(jù)融合方法最適合這種情況?()A.基于特征的融合B.基于決策的融合C.基于模型的融合D.以上方法結(jié)合使用2、大數(shù)據(jù)的價(jià)值在于能夠從海量數(shù)據(jù)中挖掘出有意義的信息和知識(shí)。假設(shè)一家金融機(jī)構(gòu)擁有大量客戶的交易數(shù)據(jù),想要預(yù)測(cè)客戶的信用風(fēng)險(xiǎn)。以下哪種數(shù)據(jù)分析方法可能最有效?()A.描述性統(tǒng)計(jì)分析,總結(jié)數(shù)據(jù)的基本特征B.關(guān)聯(lián)規(guī)則挖掘,發(fā)現(xiàn)不同交易之間的關(guān)聯(lián)C.聚類分析,將客戶分為不同的風(fēng)險(xiǎn)類別D.回歸分析,建立信用風(fēng)險(xiǎn)與交易數(shù)據(jù)的數(shù)學(xué)模型3、對(duì)于一個(gè)跨多個(gè)數(shù)據(jù)中心的大數(shù)據(jù)系統(tǒng),為了實(shí)現(xiàn)數(shù)據(jù)的同步和一致性,以下哪種技術(shù)或工具通常被采用?()A.分布式鎖B.數(shù)據(jù)復(fù)制C.數(shù)據(jù)遷移D.數(shù)據(jù)備份4、大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中的應(yīng)用包括信用風(fēng)險(xiǎn)評(píng)估、市場(chǎng)風(fēng)險(xiǎn)預(yù)測(cè)、操作風(fēng)險(xiǎn)監(jiān)測(cè)等,以下關(guān)于大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中應(yīng)用的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于信用風(fēng)險(xiǎn)評(píng)估,提高金融機(jī)構(gòu)的風(fēng)險(xiǎn)管理能力B.大數(shù)據(jù)可以用于市場(chǎng)風(fēng)險(xiǎn)預(yù)測(cè),提高金融機(jī)構(gòu)的盈利能力C.大數(shù)據(jù)可以用于操作風(fēng)險(xiǎn)監(jiān)測(cè),加強(qiáng)金融機(jī)構(gòu)的內(nèi)部控制D.大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中的應(yīng)用只局限于傳統(tǒng)金融機(jī)構(gòu),不能應(yīng)用于互聯(lián)網(wǎng)金融5、在大數(shù)據(jù)存儲(chǔ)中,為了提高數(shù)據(jù)的讀取性能,以下哪種緩存策略通常被使用?()A.頁(yè)面緩存B.行緩存C.塊緩存D.以上都是6、在大數(shù)據(jù)的資源管理中,YARN(YetAnotherResourceNegotiator)是一個(gè)重要的框架。假設(shè)一個(gè)大數(shù)據(jù)集群使用YARN進(jìn)行資源分配,以下關(guān)于YARN的功能,哪一項(xiàng)是不準(zhǔn)確的?()A.支持多種計(jì)算框架在同一集群上運(yùn)行B.對(duì)內(nèi)存和CPU資源進(jìn)行精細(xì)的管理和分配C.負(fù)責(zé)數(shù)據(jù)的存儲(chǔ)和管理D.提供了資源隔離和共享機(jī)制7、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市的構(gòu)建至關(guān)重要。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市的比較,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)倉(cāng)庫(kù)通常涵蓋整個(gè)企業(yè)的所有數(shù)據(jù),而數(shù)據(jù)集市側(cè)重于特定的業(yè)務(wù)部門或主題B.數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)粒度較粗,數(shù)據(jù)集市的數(shù)據(jù)粒度較細(xì)C.數(shù)據(jù)集市的建設(shè)成本通常低于數(shù)據(jù)倉(cāng)庫(kù)D.數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市的數(shù)據(jù)來源相同,沒有區(qū)別8、大數(shù)據(jù)中的數(shù)據(jù)隱私保護(hù)至關(guān)重要。假設(shè)一家公司需要對(duì)用戶數(shù)據(jù)進(jìn)行分析,但又要確保用戶隱私不被泄露。以下哪種技術(shù)可以在不暴露原始數(shù)據(jù)的情況下進(jìn)行數(shù)據(jù)分析?()A.數(shù)據(jù)加密B.數(shù)據(jù)脫敏C.差分隱私D.以上都是9、在大數(shù)據(jù)處理中,常常需要對(duì)海量數(shù)據(jù)進(jìn)行快速的排序和檢索。假設(shè)有一個(gè)包含數(shù)億條用戶交易記錄的數(shù)據(jù)集,每條記錄包含交易時(shí)間、交易金額、交易地點(diǎn)等信息?,F(xiàn)在需要快速找出在特定時(shí)間段內(nèi)交易金額最高的前100筆交易。以下哪種技術(shù)或算法最適合解決這個(gè)問題?()A.冒泡排序算法B.快速排序算法C.基于Hadoop生態(tài)系統(tǒng)的MapReduce編程模型D.二叉搜索樹10、對(duì)于一個(gè)包含大量地理位置信息的大數(shù)據(jù)集,要進(jìn)行空間查詢和分析,以下哪種數(shù)據(jù)庫(kù)或技術(shù)更適合?()A.空間數(shù)據(jù)庫(kù)B.文檔數(shù)據(jù)庫(kù)C.關(guān)系數(shù)據(jù)庫(kù)D.內(nèi)存數(shù)據(jù)庫(kù)11、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)質(zhì)量問題可能導(dǎo)致錯(cuò)誤的分析結(jié)果。假設(shè)一個(gè)數(shù)據(jù)集存在大量噪聲數(shù)據(jù)。以下哪種方法可以減少噪聲的影響?()A.直接刪除含有噪聲的數(shù)據(jù)點(diǎn)B.采用平滑技術(shù)對(duì)噪聲數(shù)據(jù)進(jìn)行處理C.忽略噪聲數(shù)據(jù),只關(guān)注主要的數(shù)據(jù)趨勢(shì)D.增加更多的數(shù)據(jù)來稀釋噪聲的影響12、在大數(shù)據(jù)處理中,數(shù)據(jù)預(yù)處理是一個(gè)重要的環(huán)節(jié),以下關(guān)于數(shù)據(jù)預(yù)處理的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)集成、數(shù)據(jù)轉(zhuǎn)換等步驟B.數(shù)據(jù)預(yù)處理可以提高數(shù)據(jù)的質(zhì)量和可用性C.數(shù)據(jù)預(yù)處理只需要對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的處理,不需要考慮數(shù)據(jù)的業(yè)務(wù)含義D.數(shù)據(jù)預(yù)處理需要根據(jù)具體的業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)進(jìn)行定制化處理13、在大數(shù)據(jù)安全領(lǐng)域,身份認(rèn)證和訪問控制是重要的防護(hù)措施。以下關(guān)于身份認(rèn)證和訪問控制的描述,哪一項(xiàng)是錯(cuò)誤的?()A.身份認(rèn)證用于驗(yàn)證用戶的身份,常見的方法包括密碼、指紋識(shí)別等B.訪問控制決定用戶對(duì)數(shù)據(jù)和資源的訪問權(quán)限,基于角色的訪問控制是一種常見的方式C.一旦用戶通過身份認(rèn)證,就應(yīng)該賦予其對(duì)所有數(shù)據(jù)的無限制訪問權(quán)限D(zhuǎn).多因素身份認(rèn)證可以提高身份驗(yàn)證的安全性和可靠性14、在進(jìn)行大數(shù)據(jù)可視化時(shí),需要考慮多種因素。假設(shè)我們要展示一個(gè)城市在一年中每天的氣溫變化情況,以下哪種可視化方式不太合適?()A.折線圖B.餅圖C.柱狀圖D.箱線圖15、在大數(shù)據(jù)處理中,數(shù)據(jù)傾斜是一個(gè)常見的問題。以下關(guān)于數(shù)據(jù)傾斜的描述,錯(cuò)誤的是()A.數(shù)據(jù)傾斜會(huì)導(dǎo)致某些任務(wù)的處理時(shí)間過長(zhǎng)B.通常是由于數(shù)據(jù)分布不均勻引起的C.可以通過增加節(jié)點(diǎn)數(shù)量來解決數(shù)據(jù)傾斜問題D.對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和優(yōu)化算法可以緩解數(shù)據(jù)傾斜16、在大數(shù)據(jù)的數(shù)據(jù)庫(kù)選擇中,NoSQL數(shù)據(jù)庫(kù)因其靈活的數(shù)據(jù)模型而受到關(guān)注。假設(shè)一個(gè)應(yīng)用需要存儲(chǔ)大量的非結(jié)構(gòu)化數(shù)據(jù),并且對(duì)數(shù)據(jù)的讀寫性能要求較高。以下哪種NoSQL數(shù)據(jù)庫(kù)最適合?()A.文檔數(shù)據(jù)庫(kù)B.鍵值數(shù)據(jù)庫(kù)C.列族數(shù)據(jù)庫(kù)D.圖數(shù)據(jù)庫(kù)17、在大數(shù)據(jù)安全領(lǐng)域,訪問控制是重要的防護(hù)手段。假設(shè)一個(gè)企業(yè)的大數(shù)據(jù)平臺(tái)包含敏感的商業(yè)數(shù)據(jù)。以下哪種訪問控制模型最適合?()A.自主訪問控制(DAC),用戶自主決定數(shù)據(jù)訪問權(quán)限B.強(qiáng)制訪問控制(MAC),基于系統(tǒng)的安全策略進(jìn)行嚴(yán)格限制C.基于角色的訪問控制(RBAC),根據(jù)用戶角色分配權(quán)限D(zhuǎn).以上三種模型結(jié)合使用,實(shí)現(xiàn)多層次的訪問控制18、大數(shù)據(jù)處理框架眾多,如Hadoop、Spark等。假設(shè)我們需要對(duì)大規(guī)模的實(shí)時(shí)數(shù)據(jù)進(jìn)行快速處理和分析。以下哪種框架更適合?()A.Hadoop,因其在批處理方面表現(xiàn)出色B.Spark,具有良好的實(shí)時(shí)處理能力和內(nèi)存計(jì)算優(yōu)勢(shì)C.Flink,專注于流處理和事件驅(qū)動(dòng)應(yīng)用D.Storm,適用于對(duì)延遲要求極高的場(chǎng)景19、對(duì)于一個(gè)需要處理大規(guī)模圖數(shù)據(jù)的社交網(wǎng)絡(luò)分析系統(tǒng),以下哪種算法能夠發(fā)現(xiàn)關(guān)鍵節(jié)點(diǎn)和影響力傳播路徑?()A.PageRank算法B.最短路徑算法C.最小生成樹算法D.以上都是20、在大數(shù)據(jù)處理中,為了處理海量的日志數(shù)據(jù),以下哪種工具或技術(shù)經(jīng)常被使用?()A.LogstashB.FlumeC.SplunkD.以上都是二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋如何利用大數(shù)據(jù)進(jìn)行疾病監(jiān)測(cè)和預(yù)警。2、(本題5分)什么是數(shù)據(jù)目錄,在大數(shù)據(jù)管理中的作用是什么?3、(本題5分)解釋大數(shù)據(jù)如何支持電信業(yè)務(wù)創(chuàng)新。三、綜合分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究某在線醫(yī)療平臺(tái)的遠(yuǎn)程醫(yī)療數(shù)據(jù),推廣遠(yuǎn)程醫(yī)療服務(wù)。2、(本題5分)分析大數(shù)據(jù)在玻璃行業(yè)的應(yīng)用,如玻璃制品工藝改進(jìn)、市場(chǎng)銷售預(yù)測(cè),以及節(jié)能減排數(shù)據(jù)的分析。3、(本題5分)分析某在線音樂平臺(tái)的音樂版權(quán)使用數(shù)據(jù),合理采購(gòu)版權(quán)。4、(本題5分)綜合研究大數(shù)據(jù)在水產(chǎn)養(yǎng)殖行業(yè)的應(yīng)用,如水產(chǎn)品生長(zhǎng)監(jiān)測(cè)、養(yǎng)殖環(huán)境優(yōu)化,以及市場(chǎng)銷售渠道分析。5、(本題5分)綜合研究大數(shù)據(jù)在建筑行業(yè)的應(yīng)用,如項(xiàng)目管理、能耗分析,以及建筑信息模型(BIM)與大數(shù)據(jù)的融合。四、編程題(本大題共2個(gè)小題,共20分)1、(本題10分)運(yùn)用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論