版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
遠程授課山西省大同市第一中學2025屆高三下學期聯(lián)考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是虛數(shù)單位,復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.3.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]4.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()5.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題6.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個結論:①在上單調(diào)遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④7.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③8.的展開式中的系數(shù)為()A. B. C. D.9.設是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則10.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.11.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為()A. B. C. D.12.方程的實數(shù)根叫作函數(shù)的“新駐點”,如果函數(shù)的“新駐點”為,那么滿足()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖的算法,輸出的結果是_________.14.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.15.在平面直角坐標系中,曲線上任意一點到直線的距離的最小值為________.16.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.18.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據(jù)統(tǒng)計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數(shù),表示被清華、北大等名校錄取的學生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發(fā)現(xiàn)與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數(shù)為61人,預測2019年高考該校考人名校的人數(shù);(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,19.(12分)某企業(yè)對設備進行升級改造,現(xiàn)從設備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,該項質(zhì)量指標值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設備改造前樣本的頻率分布直方圖,下表是設備改造后樣本的頻數(shù)分布表.圖:設備改造前樣本的頻率分布直方圖表:設備改造后樣本的頻率分布表質(zhì)量指標值頻數(shù)2184814162(1)求圖中實數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進行等級細分,質(zhì)量指標值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標值落在區(qū)間或內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.若有一名顧客隨機購買兩件產(chǎn)品支付的費用為(單位:元),求的分布列和數(shù)學期望.20.(12分)己知,,.(1)求證:;(2)若,求證:.21.(12分)為提供市民的健身素質(zhì),某市把四個籃球館全部轉為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;(2)設四個籃球館一個月內(nèi)各館使用次數(shù)之和為,其相應維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,22.(10分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設,是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
求出復數(shù)在復平面內(nèi)對應的點的坐標,即可得出結論.【詳解】復數(shù)在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數(shù)對應的點的位置的判斷,屬于基礎題.2、B【解析】
作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應用,根據(jù)目標函數(shù)的幾何意義結合斜率公式是解決本題的關鍵.3、D【解析】
設,可得,構造()22,結合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.4、D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質(zhì),得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質(zhì),屬于基礎題.5、B【解析】
由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于中檔題.6、A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.7、A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.8、C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數(shù)、整數(shù)冪的運算等有關方面的知識與技能,屬于中低檔題,也是??贾R點.在二項式定理的應用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.9、C【解析】
根據(jù)空間中直線與平面、平面與平面位置關系相關定理依次判斷各個選項可得結果.【詳解】對于,當為內(nèi)與垂直的直線時,不滿足,錯誤;對于,設,則當為內(nèi)與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設,則當為內(nèi)與平行的直線時,,錯誤.故選:.【點睛】本題考查立體幾何中線面關系、面面關系有關命題的辨析,考查學生對于平行與垂直相關定理的掌握情況,屬于基礎題.10、A【解析】
求出拋物線的焦點坐標,利用拋物線的定義,轉化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,
過點P作PM垂直于準線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當時,,當時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質(zhì)的簡單應用,直線的斜率公式、利用數(shù)形結合進行轉化是解決本題的關鍵.考查學生的計算能力,屬于中檔題.11、D【解析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立..令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.【點睛】本題考查構造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學生的分析問題的能力和計算求解的能力,難度較難.12、D【解析】
由題設中所給的定義,方程的實數(shù)根叫做函數(shù)的“新駐點”,根據(jù)零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數(shù)根叫做函數(shù)的“新駐點”,對于函數(shù),由于,,設,該函數(shù)在為增函數(shù),,,在上有零點,故函數(shù)的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】
根據(jù)該For語句的功能,可得,可得結果【詳解】根據(jù)該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎題.14、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.15、【解析】
解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標,再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當且僅當時,即當時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導數(shù)法):曲線的函數(shù)解析式為,則,設過曲線上任意一點的切線與直線平行,則,解得,當時,到直線的距離;當時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉化為利用切線與直線平行來找出切點,轉化為切點到直線的距離,也可以設曲線上的動點坐標,利用基本不等式法或函數(shù)的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關鍵是能夠利用圓的性質(zhì)和對數(shù)運算法則構造出滿足的方程,由此得到結果.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應用,基本不等式的應用,三角函數(shù)的值域等,考查了學生運算求解能力.18、(1);(2)117人;(3)分布列見解析,【解析】
(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據(jù)回歸直線方程計算公式,計算可得人數(shù);(3)和被選中的人數(shù)分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數(shù)學期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當時,所以預測2019年高考該校考入名校的人數(shù)約為117人(3)由題知和被選中的人數(shù)分別為2和3,進行演講的兩人是2018年畢業(yè)的人數(shù)的所有可能取值為0,1,2,,的分布列為012【點睛】本小題主要考查平均數(shù)有關計算,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數(shù)據(jù)處理能力,屬于中檔題.19、(1)(2)詳見解析【解析】
(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費用的所有取值為240,300,360,420,480,由相互獨立事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望.【詳解】解:(1)據(jù)題意,得所以(2)據(jù)表1分析知,從所有產(chǎn)品中隨機抽一件是一等品、二等品、三等品的概率分別為.隨機變量的所有取值為240,300,360,420,480.隨機變量的分布列為240300360420480所以(元)【點睛】本題考查頻率分布直方圖,頻數(shù)分布表,考查隨機變量的概率分布列和數(shù)學期望,解題時掌握性質(zhì):頻率分布直方圖中所有頻率和為1.本題考查學生的數(shù)據(jù)處理能力,屬于中檔題.20、(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年生態(tài)旅游區(qū)門面房買賣合同范本3篇
- 2024年版地下水開采合同3篇
- 2024年珠寶首飾租賃協(xié)議2篇
- 2024年企事業(yè)單位食堂餐飲承包合同及員工餐飲健康促進3篇
- 2024年標準離婚股權分割合同模板版B版
- 2025房屋出租合同樣本
- 2024年員工勞動合同模板在線評估與反饋合同3篇
- 渣土運輸合同范文
- 2024年某公司與建筑公司之間的裝修合同
- 地下排水簡易施工合同
- 人民日報出版社有限責任公司招聘筆試題庫2024
- 2024年煤礦事故匯編
- Unit 7單元教案 2024-2025學年人教版(2024)七年級英語上冊
- Unit 6 My sweet home(教學設計)-2024-2025學年外研版(三起)(2024)小學英語三年級上冊
- 北師大版教案正比例函數(shù)案例分析
- 行政文秘筆試題
- 人教版(2024)七年級地理上冊跨學科主題學習《探索外來食料作物傳播史》精美課件
- 2024-2025學年七年級數(shù)學上冊第一學期 期末模擬測試卷(湘教版)
- 職業(yè)素質(zhì)養(yǎng)成(吉林交通職業(yè)技術學院)智慧樹知到答案2024年吉林交通職業(yè)技術學院
- 《紅樓夢》第5課時:欣賞小說人物創(chuàng)作的詩詞(教學教學設計)高一語文同步備課系列(統(tǒng)編版必修下冊)
- 【新教材】蘇科版(2024)七年級上冊數(shù)學第1-6章全冊教案設計
評論
0/150
提交評論