版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆杭州外國(guó)語(yǔ)學(xué)校高三第二次診斷性檢測(cè)數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.2.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.33.將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為()A. B. C. D.4.設(shè)F為雙曲線(xiàn)C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.5.?dāng)?shù)列滿(mǎn)足,且,,則()A. B.9 C. D.76.已知雙曲線(xiàn)與雙曲線(xiàn)有相同的漸近線(xiàn),則雙曲線(xiàn)的離心率為()A. B. C. D.7.若,則()A. B. C. D.8.設(shè)是虛數(shù)單位,則()A. B. C. D.9.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.210.如果,那么下列不等式成立的是()A. B.C. D.11.的二項(xiàng)展開(kāi)式中,的系數(shù)是()A.70 B.-70 C.28 D.-2812.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在各項(xiàng)均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.14.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為_(kāi)_____.15.展開(kāi)式中的系數(shù)為_(kāi)________.(用數(shù)字做答)16.已知點(diǎn)是雙曲線(xiàn)漸近線(xiàn)上的一點(diǎn),則雙曲線(xiàn)的離心率為_(kāi)______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對(duì)于任意,.18.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對(duì)任意的實(shí)數(shù)恒成立,求的取值范圍.19.(12分)已知拋物線(xiàn)上一點(diǎn)到焦點(diǎn)的距離為2,(1)求的值與拋物線(xiàn)的方程;(2)拋物線(xiàn)上第一象限內(nèi)的動(dòng)點(diǎn)在點(diǎn)右側(cè),拋物線(xiàn)上第四象限內(nèi)的動(dòng)點(diǎn),滿(mǎn)足,求直線(xiàn)的斜率范圍.20.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.21.(12分)已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),且,求的取值范圍.22.(10分)已知函數(shù).(1)若,且,求證:;(2)若時(shí),恒有,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用正態(tài)分布密度曲線(xiàn)的對(duì)稱(chēng)性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點(diǎn)睛】本題考查利用正態(tài)分布密度曲線(xiàn)的對(duì)稱(chēng)性求概率,屬于基礎(chǔ)題.2、D【解析】
在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時(shí),取最大即可求得結(jié)果.【詳解】因?yàn)?,所以,即,又,所以公差,所以,即,因?yàn)楹瘮?shù),在時(shí),單調(diào)遞減,且;在時(shí),單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問(wèn)題,難度較易.3、B【解析】
根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時(shí),,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.4、A【解析】
準(zhǔn)確畫(huà)圖,由圖形對(duì)稱(chēng)性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線(xiàn)的離心率.【詳解】設(shè)與軸交于點(diǎn),由對(duì)稱(chēng)性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線(xiàn)離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線(xiàn)離心率問(wèn)題是圓錐曲線(xiàn)中的重點(diǎn)問(wèn)題,需強(qiáng)化練習(xí),才能在解決此類(lèi)問(wèn)題時(shí)事半功倍,信手拈來(lái).5、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿(mǎn)足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)和通項(xiàng)公式的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6、C【解析】
由雙曲線(xiàn)與雙曲線(xiàn)有相同的漸近線(xiàn),列出方程求出的值,即可求解雙曲線(xiàn)的離心率,得到答案.【詳解】由雙曲線(xiàn)與雙曲線(xiàn)有相同的漸近線(xiàn),可得,解得,此時(shí)雙曲線(xiàn),則曲線(xiàn)的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線(xiàn)的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線(xiàn)的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.7、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.8、A【解析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.10、D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.11、A【解析】試題分析:由題意得,二項(xiàng)展開(kāi)式的通項(xiàng)為,令,所以的系數(shù)是,故選A.考點(diǎn):二項(xiàng)式定理的應(yīng)用.12、D【解析】
直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式得到關(guān)于的方程,解方程求出代入等比數(shù)列通項(xiàng)公式即可.【詳解】因?yàn)椋傻炔顢?shù)列,所以,由等比數(shù)列通項(xiàng)公式得,,所以,解得或,因?yàn)?,所以,所以等比?shù)列的通項(xiàng)公式為.故答案為:【點(diǎn)睛】本題考查等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力和知識(shí)綜合運(yùn)用能力;熟練掌握等差中項(xiàng)和等比數(shù)列通項(xiàng)公式是求解本題的關(guān)鍵;屬于中檔題.14、【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.15、210【解析】
轉(zhuǎn)化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、【解析】
先表示出漸近線(xiàn),再代入點(diǎn),求出,則離心率易求.【詳解】解:的漸近線(xiàn)是因?yàn)樵跐u近線(xiàn)上,所以,故答案為:【點(diǎn)睛】考查雙曲線(xiàn)的離心率的求法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ),(Ⅱ)見(jiàn)解析【解析】
(1)根據(jù)導(dǎo)數(shù)的運(yùn)算法則,求出函數(shù)的導(dǎo)數(shù),利用切線(xiàn)方程求出切線(xiàn)的斜率及切點(diǎn),利用函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為曲線(xiàn)切線(xiàn)的斜率及切點(diǎn)也在曲線(xiàn)上,列出方程組,求出,值;(2)首先將不等式轉(zhuǎn)化為函數(shù),即將不等式右邊式子左移,得,構(gòu)造函數(shù)并判斷其符號(hào),這里應(yīng)注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線(xiàn)的斜率為,且過(guò)點(diǎn),故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當(dāng)時(shí),,所以,即.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求切線(xiàn)的斜率,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、和最值問(wèn)題,以及不等式證明問(wèn)題,考查了分析及解決問(wèn)題的能力,其中,不等式問(wèn)題中結(jié)合構(gòu)造函數(shù)實(shí)現(xiàn)正確轉(zhuǎn)換為最大值和最小值問(wèn)題是關(guān)鍵.18、(1);(2)【解析】試題分析:(1)將絕對(duì)值不等式兩邊平方,化為二次不等式求解.(2)將問(wèn)題化為分段函數(shù)問(wèn)題,通過(guò)分類(lèi)討論并根據(jù)恒成立問(wèn)題的解法求解即可.試題解析:整理得解得①②解得③,且無(wú)限趨近于4,綜上的取值范圍是19、(1)1;(2)【解析】
(1)根據(jù)點(diǎn)到焦點(diǎn)的距離為2,利用拋物線(xiàn)的定義得,再根據(jù)點(diǎn)在拋物線(xiàn)上有,列方程組求解,(2)設(shè),根據(jù),再由,求得,當(dāng),即時(shí),直線(xiàn)斜率不存在;當(dāng)時(shí),,令,利用導(dǎo)數(shù)求解,【詳解】(1)因?yàn)辄c(diǎn)到焦點(diǎn)的距離為2,即點(diǎn)到準(zhǔn)線(xiàn)的距離為2,得,又,解得,所以?huà)佄锞€(xiàn)方程為(2)設(shè),由由,則當(dāng),即時(shí),直線(xiàn)斜率不存在;當(dāng)時(shí),令,所以在上分別遞減則【點(diǎn)睛】本題主要考查拋物線(xiàn)定義及方程的應(yīng)用,還考查了分類(lèi)討論的思想和運(yùn)算求解的能力,屬于中檔題,20、(1),(2)【解析】
(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯(cuò)位相減求和即可.【詳解】解:(1)依題意,,設(shè)數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解以及錯(cuò)位相減求和等.屬于中檔題.21、(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立時(shí),的取值范圍;(2)由已知,在區(qū)間內(nèi)恰有一個(gè)零點(diǎn),轉(zhuǎn)化為在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),由(1)的結(jié)論對(duì)分類(lèi)討論,根據(jù)單調(diào)性,結(jié)合零點(diǎn)存在性定理,即可求出結(jié)論.【詳解】(1)由題意得,則,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增時(shí),在區(qū)間上恒成立.∴(其中),解得.當(dāng)函數(shù)在區(qū)間上單調(diào)遞減時(shí),在區(qū)間上恒成立,∴(其中),解得.綜上所述,實(shí)數(shù)的取值范圍是.(2).由,知在區(qū)間內(nèi)恰有一個(gè)零點(diǎn),設(shè)該零點(diǎn)為,則在區(qū)間內(nèi)不單調(diào).∴在區(qū)間內(nèi)存在零點(diǎn),同理在區(qū)間內(nèi)存在零點(diǎn).∴在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn).由(1)易知,當(dāng)時(shí),在區(qū)間上單調(diào)遞增,故在區(qū)間內(nèi)至多有一個(gè)零點(diǎn),不合題意.當(dāng)時(shí),在區(qū)間上單調(diào)遞減,故在區(qū)間內(nèi)至多有一個(gè)零點(diǎn),不合題意,∴.令,得,∴函數(shù)在區(qū)間上單凋遞減,在區(qū)間上單調(diào)遞增.記的兩個(gè)零點(diǎn)為,∴,必有.由,得.∴又∵,∴.綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、零點(diǎn)問(wèn)題,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.22、(1)見(jiàn)解析;(2).【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價(jià)轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過(guò)推導(dǎo)出來(lái)證得結(jié)論;(2)構(gòu)造函數(shù),對(duì)實(shí)數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過(guò)構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《尊重他人是我的需要》課件
- 2024屆江蘇省興化市高三上學(xué)期期末考試歷史試題(解析版)
- 單位管理制度集粹匯編職工管理篇十篇
- 單位管理制度匯編大合集員工管理篇十篇
- 單位管理制度分享匯編【人員管理篇】
- 單位管理制度呈現(xiàn)合集【人員管理篇】
- 2017-2021年安徽專(zhuān)升本考試英語(yǔ)真題卷
- 《雨點(diǎn)兒》教案(15篇)
- 《行政職業(yè)能力測(cè)驗(yàn)》陜西省咸陽(yáng)市禮泉縣2023年公務(wù)員考試深度預(yù)測(cè)試卷含解析
- 《電工復(fù)習(xí)題》課件
- DB11-T 693-2024 施工現(xiàn)場(chǎng)臨建房屋應(yīng)用技術(shù)標(biāo)準(zhǔn)
- GB/T 45089-20240~3歲嬰幼兒居家照護(hù)服務(wù)規(guī)范
- 統(tǒng)編版2024-2025學(xué)年三年級(jí)上冊(cè)語(yǔ)文期末情景試卷(含答案)
- 中國(guó)近代史綱要中國(guó)計(jì)量大學(xué)現(xiàn)代科技學(xué)院練習(xí)題復(fù)習(xí)資料
- 2024年01月11344金融風(fēng)險(xiǎn)管理期末試題答案
- 浙江省杭州市八縣區(qū)2024-2025學(xué)年高二數(shù)學(xué)上學(xué)期期末學(xué)業(yè)水平測(cè)試試題
- 紹興文理學(xué)院元培學(xué)院《操作系統(tǒng)》2022-2023學(xué)年第一學(xué)期期末試卷
- 湖南省長(zhǎng)沙市明德教育集團(tuán)初中聯(lián)盟2020-2021學(xué)年八年級(jí)上學(xué)期期末考試地理試題
- 期末復(fù)習(xí)綜合卷(試題)-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)人教版
- 施工員崗位述職報(bào)告
- 第47屆江蘇省選拔賽化學(xué)實(shí)驗(yàn)室技術(shù)項(xiàng)目技術(shù)文件
評(píng)論
0/150
提交評(píng)論