版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中原名校2025屆高考數(shù)學五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數(shù)滿足,在復平面內對應的點為,則()A. B. C. D.2.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.3.已知各項都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.4.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為5.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件6.已知的內角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.7.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.8.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要9.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.10.在直角中,,,,若,則()A. B. C. D.11.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.7812.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足,則的最大值為______.14.已知是定義在上的奇函數(shù),當時,,則不等式的解集用區(qū)間表示為__________.15.已知實數(shù),滿足約束條件,則的最大值是__________.16.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.18.(12分)在中,角的對邊分別為,若.(1)求角的大??;(2)若,為外一點,,求四邊形面積的最大值.19.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.20.(12分)已知函數(shù)f(x)=x(1)討論fx(2)當x≥-1時,fx+a21.(12分)某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當時,,求此時的值;(2)設,且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.22.(10分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設,根據(jù)復數(shù)的幾何意義得到、的關系式,即可得解;【詳解】解:設∵,∴,解得.故選:B【點睛】本題考查復數(shù)的幾何意義的應用,屬于基礎題.2、D【解析】
設出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數(shù)法;⑤待定系數(shù)法3、A【解析】試題分析:設公差為或(舍),故選A.考點:等差數(shù)列及其性質.4、C【解析】
根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.5、C【解析】試題分析:根據(jù)充分條件和必要條件的定義進行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調遞增數(shù)列,若數(shù)列{an}為單調遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調遞增數(shù)列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.6、B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據(jù)中線作出平行四邊形是關鍵,是中檔題.7、D【解析】
設,利用余弦定理,結合雙曲線的定義進行求解即可.【詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數(shù)學運算能力.8、B【解析】
利用充分條件、必要條件與集合包含關系之間的等價關系,即可得出?!驹斀狻吭O對應的集合是,由解得且對應的集合是,所以,故是的必要不充分條件,故選B?!军c睛】本題主要考查充分條件、必要條件的判斷方法——集合關系法。設,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。9、A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平.10、C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數(shù)量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數(shù)量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.11、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉化計算,再根據(jù)等差數(shù)列求和公式計算出結果.【詳解】解:由題意得,當為奇數(shù)時,,當為偶數(shù)時,所以當為奇數(shù)時,;當為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質應用,等差數(shù)列的求和公式,屬于中檔題.12、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構建和的方程組求通項公式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出不等式組表示的平面區(qū)域,將目標函數(shù)理解為點與構成直線的斜率,數(shù)形結合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因為可以理解為點與構成直線的斜率,數(shù)形結合可知,當且僅當目標函數(shù)過點時,斜率取得最大值,故的最大值為.故答案為:.【點睛】本題考查目標函數(shù)為斜率型的規(guī)劃問題,屬基礎題.14、【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(15、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當直線經(jīng)過時,最大,且,故的最大值為.故答案為:.【點睛】本題考查線性規(guī)劃中非線性目標函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎題.16、【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質,可得,所以.②根據(jù)①②得出,.所以.故答案為.【點睛】本題主要考查等差數(shù)列、等比數(shù)列的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】
(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標方程與普通方程、參數(shù)方程與普通方程的互化知識,解題的關鍵是正確使用這一轉化公式,還考查了直線與圓的位置關系等知識.18、(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.19、(1)(2)【解析】
(1)利用余弦定理可得的長;(2)利用面積得出,結合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.20、(1)見解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對a分類討論,即可得出單調性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當x=-1時,0≤-1e+1恒成立.當x>-1時,a≤xe【詳解】解法一:(1)f①當a≤0時,x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調遞減,在(-1,+∞)單調遞增.②當a>0時,f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調遞增,在綜上:當a≤0時,f(x)在(-∞,-1)上單調遞減,在(-1,+∞)上單調遞增;當0<a<1e時,f(x)在(-∞,lna),自a=1e時,f(x)在當a>1e時,f(x)在(-∞,-1),(ln(2)因為xex-ax-a+1≥0當x=-1時,0≤-1當x>-1時,a≤x令g(x)=xex設h(x)=e因為h'(x)=e即hx=e又因為h0=0,所以g(x)=xex則g(x)min=g(0)=1綜上,a的取值范圍為-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'當a≤0時,g'(x)≥0,則g(x)在所以g(x)≥g(-1)=-1當0<a≤1時,令h(x)=e因為h'(x)=2ex+x又因為h-1=-a<0,所以h(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《奶制品培訓資料》課件
- 《小王子英文》課件
- 《企業(yè)管理概論》課件
- 2024年雷電頌教案
- 尖子生家長會發(fā)言稿
- 單位管理制度匯編大合集【人員管理篇】十篇
- 單位管理制度合并匯編職工管理
- 單位管理制度分享大全【職員管理篇】
- 單位管理制度范文大合集人力資源管理十篇
- 單位管理制度范例合集【職工管理】十篇
- DL-T 380-2010接地降阻材料技術條件
- 限期交貨保證書模板
- 安防設備更新改造項目可行性研究報告-超長期國債
- 2024過敏性休克搶救指南(2024)課件干貨分享
- 2024年紀委監(jiān)委招聘筆試必背試題庫500題(含答案)
- 【發(fā)動機曲軸數(shù)控加工工藝過程卡片的設計7800字(論文)】
- 中藥破壁飲片文稿專家講座
- 2025年高考語文備考之名著閱讀《鄉(xiāng)土中國》重要概念解釋一覽表
- JG197-2006 預應力混凝土空心方樁
- 醫(yī)院護理培訓課件:《安全注射》
- 變、配電室門禁管理制度
評論
0/150
提交評論