版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省衡水市2025屆高考考前提分?jǐn)?shù)學(xué)仿真卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B. C. D.2.已知拋物線的焦點為,對稱軸與準(zhǔn)線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°3.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點.給出以下四個結(jié)論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.4.若集合,,則()A. B. C. D.5.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.6.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個7.設(shè)是定義在實數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時,,則,,的大小關(guān)系是()A. B. C. D.8.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.69.已知全集,則集合的子集個數(shù)為()A. B. C. D.10.設(shè)曲線在點處的切線方程為,則()A.1 B.2 C.3 D.411.若,則()A. B. C. D.12.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢二、填空題:本題共4小題,每小題5分,共20分。13.已知一個正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為__________.14.已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于_____.15.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.16.設(shè)(其中為自然對數(shù)的底數(shù)),,若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關(guān)于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.18.(12分)貧困人口全面脫貧是全面建成小康社會的標(biāo)志性指標(biāo).黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機(jī)制”對當(dāng)前和下一個階段的扶貧工作進(jìn)行了前瞻性的部署,即2020年要通過精準(zhǔn)扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標(biāo).為了響應(yīng)黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進(jìn)行指導(dǎo),經(jīng)調(diào)查知,在一個銷售季度內(nèi),每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計,兩市場以往100個銷售周期該產(chǎn)品的市場需求量的頻數(shù)分布如下表:市場:需求量(噸)90100110頻數(shù)205030市場:需求量(噸)90100110頻數(shù)106030把市場需求量的頻率視為需求量的概率,設(shè)該廠在下個銷售周期內(nèi)生產(chǎn)噸該產(chǎn)品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據(jù),確定下個銷售周期內(nèi)生產(chǎn)量噸還是噸?并說明理由.19.(12分)已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)在上存在零點.求實數(shù)的取值范圍;若存在實數(shù),當(dāng)時,函數(shù)在時取得最大值,求正實數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實數(shù)的值.20.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點,求中線的長.21.(12分)已知函數(shù),其中.(1)當(dāng)時,求在的切線方程;(2)求證:的極大值恒大于0.22.(10分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學(xué)生的基本運算能力,是一道容易題.2、C【解析】
如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.3、C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時,與面所成角(或的正切值為最小,當(dāng)在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當(dāng)在(或)時,與面所成角(或)的正切值為最小(為下底面面對角線的交點),當(dāng)在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當(dāng)且僅當(dāng)在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強(qiáng),屬于難題.4、A【解析】
用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.5、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當(dāng)且僅當(dāng)時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.6、B【解析】
由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關(guān)鍵,著重考查了推理與運算能力.7、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對稱.
∵當(dāng)x≥1時,為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C8、B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點睛】本題考查正三棱柱側(cè)面積的計算以及三視圖的認(rèn)識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.9、C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補(bǔ)集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題10、D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查運算求解能力,是基礎(chǔ)題11、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.12、D【解析】
根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點睛】本題考查了折線圖,意在考查學(xué)生的理解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),,,,,,.故答案為:.【點睛】本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.14、2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點,即求.【詳解】不妨設(shè)點P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點∴,.∵M(jìn),N分別為PQ,PF的中點,∴,∵PQ垂直l于點Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點,∴,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.15、①②③【解析】
由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.16、【解析】
求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設(shè),若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,利用一元二次函數(shù)根的分布進(jìn)行求解即可.【詳解】當(dāng)時,,由得:,解得,由得:,解得,即當(dāng)時,函數(shù)取得極大值,同時也是最大值,(e),當(dāng),,當(dāng),,作出函數(shù)的圖象如圖,設(shè),由圖象知,當(dāng)或,方程有一個根,當(dāng)或時,方程有2個根,當(dāng)時,方程有3個根,則,等價為,當(dāng)時,,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數(shù)與方程的應(yīng)用,利用換元法進(jìn)行轉(zhuǎn)化一元二次函數(shù)根的分布以及.求的導(dǎo)數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)設(shè)點、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點、的坐標(biāo),利用直線、的斜率相等證明出;(2)設(shè)點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關(guān)于的表達(dá)式,結(jié)合不等式可解出實數(shù)的取值范圍.【詳解】(1)設(shè)點、,則,直線的方程為:,由,消去并整理得,由韋達(dá)定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設(shè)點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達(dá)定理得,,,得,設(shè)點到直線的高為,則,,,,解得,因此,實數(shù)的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達(dá)定理、弦長公式、直線的斜率等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是難題.18、(1);(2)噸,理由見解析【解析】
(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當(dāng)時,當(dāng)時,.,時,平均利潤大,所以下個銷售周期內(nèi)生產(chǎn)量噸.【點睛】本題考查離散型隨機(jī)變量的期望,是中檔題.19、;4;12.【解析】
由題意可知,,求導(dǎo)函數(shù),方程在區(qū)間上有實數(shù)解,求出實數(shù)的取值范圍;由,則,分步討論,并利用導(dǎo)函數(shù)在函數(shù)的單調(diào)性的研究,得出正實數(shù)的最大值;設(shè)直線與曲線的切點為,因為,所以切線斜率,切線方程為,設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,求得,設(shè),則,所以在上單調(diào)遞增,最后求出實數(shù)的值.【詳解】由題意可知,,則,即方程在區(qū)間上有實數(shù)解,解得;因為,則,①當(dāng),即時,恒成立,所以在上單調(diào)遞增,不符題意;②當(dāng)時,令,解得:,當(dāng)時,,單調(diào)遞增,所以不存在,使得在上的最大值為,不符題意;③當(dāng)時,,解得:,且當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,若,則在上單調(diào)遞減,所以,若,則上單調(diào)遞減,在上單調(diào)遞增,由題意可知,,即,整理得,因為存在,符合上式,所以,解得,綜上,的最大值為4;設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程整理得:由題意可知,,即,即,解得所以切線方程為,設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,消去,整理得,且因為,解得,設(shè),則,所以在上單調(diào)遞增,因為,所以,所以,即.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的研究,導(dǎo)數(shù)的幾何意義,屬于難題.20、(1);(2)【解析】
(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)村山林流轉(zhuǎn)與林業(yè)產(chǎn)業(yè)扶持合作合同
- 2024年中國燃?xì)鉄焓袌稣{(diào)查研究報告
- 二零二五年度現(xiàn)代農(nóng)業(yè)示范區(qū)土地租賃協(xié)議書(含農(nóng)業(yè)科技成果轉(zhuǎn)化)3篇
- 2024年塑料用防霉防藻劑項目可行性研究報告
- 《流化床鍋爐含水蒸氣條件下石灰石脫硫反應(yīng)機(jī)理研究》
- 2024年漢中市人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2025年度海口商業(yè)物業(yè)租賃合同中的消防安全責(zé)任3篇
- 2024年乳膠帽項目可行性研究報告
- 2024至2030年煙斗鉸項目投資價值分析報告
- 2021成都龍泉驛區(qū)高考英語閱讀類、信息匹配課外自練(1)及答案
- 部編版八年級上冊語文期末試卷及參考答案可打印
- 洗胃的急救與護(hù)理
- 2024年紀(jì)檢監(jiān)察綜合業(yè)務(wù)知識題庫及答案(新)
- 師德師風(fēng)考核實施方案
- 【真題】2023年南京市中考語文試卷(含答案解析)
- 膀胱憩室護(hù)理查
- 2024年河南省水務(wù)規(guī)劃設(shè)計研究有限公司人才招聘筆試參考題庫附帶答案詳解
- 工程制圖知識要點
- 2024山東能源集團(tuán)中級人才庫選拔高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 視頻后期剪輯述職報告
- 個人就業(yè)能力展示
評論
0/150
提交評論