版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)黔西南民族職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)實(shí)踐》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、機(jī)器學(xué)習(xí)在圖像識(shí)別領(lǐng)域也取得了巨大的成功。以下關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于圖像分類(lèi)、目標(biāo)檢測(cè)、圖像分割等任務(wù)。常見(jiàn)的圖像識(shí)別算法有卷積神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)通過(guò)卷積層和池化層自動(dòng)學(xué)習(xí)圖像的特征表示B.支持向量機(jī)在圖像識(shí)別中的性能通常不如卷積神經(jīng)網(wǎng)絡(luò)C.圖像識(shí)別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關(guān)系不大D.機(jī)器學(xué)習(xí)在圖像識(shí)別中的應(yīng)用還面臨著一些挑戰(zhàn),如小樣本學(xué)習(xí)、對(duì)抗攻擊等2、在一個(gè)文本生成任務(wù)中,例如生成詩(shī)歌或故事,以下哪種方法常用于生成自然語(yǔ)言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經(jīng)網(wǎng)絡(luò)的方法,如TransformerD.以上都不是3、在一個(gè)圖像分類(lèi)任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測(cè),以下哪種輕量級(jí)模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG4、在一個(gè)強(qiáng)化學(xué)習(xí)問(wèn)題中,智能體需要在環(huán)境中通過(guò)不斷嘗試和學(xué)習(xí)來(lái)優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動(dòng)作空間,以下哪種算法通常被用于解決這類(lèi)問(wèn)題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法5、在一個(gè)分類(lèi)問(wèn)題中,如果數(shù)據(jù)集中存在噪聲和錯(cuò)誤標(biāo)簽,以下哪種模型可能對(duì)這類(lèi)噪聲具有一定的魯棒性?()A.集成學(xué)習(xí)模型B.深度學(xué)習(xí)模型C.支持向量機(jī)D.決策樹(shù)6、在一個(gè)氣候預(yù)測(cè)的研究中,需要根據(jù)歷史的氣象數(shù)據(jù),包括溫度、濕度、氣壓等,來(lái)預(yù)測(cè)未來(lái)一段時(shí)間的天氣狀況。數(shù)據(jù)具有季節(jié)性、周期性和長(zhǎng)期趨勢(shì)等特征。以下哪種預(yù)測(cè)方法可能是最有效的?()A.簡(jiǎn)單的線性時(shí)間序列模型,如自回歸移動(dòng)平均(ARMA)模型,適用于平穩(wěn)數(shù)據(jù),但對(duì)復(fù)雜模式的捕捉能力有限B.季節(jié)性自回歸整合移動(dòng)平均(SARIMA)模型,考慮了季節(jié)性因素,但對(duì)于非線性和突變的情況處理能力不足C.基于深度學(xué)習(xí)的長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)與門(mén)控循環(huán)單元(GRU),能夠處理長(zhǎng)序列和復(fù)雜的非線性關(guān)系,但需要大量數(shù)據(jù)和計(jì)算資源D.結(jié)合多種傳統(tǒng)時(shí)間序列模型和機(jī)器學(xué)習(xí)算法的集成方法,綜合各自的優(yōu)勢(shì),但模型復(fù)雜度和調(diào)參難度較高7、假設(shè)正在進(jìn)行一項(xiàng)關(guān)于客戶購(gòu)買(mǎi)行為預(yù)測(cè)的研究。我們擁有大量的客戶數(shù)據(jù),包括個(gè)人信息、購(gòu)買(mǎi)歷史和瀏覽記錄等。為了從這些數(shù)據(jù)中提取有價(jià)值的特征,以下哪種方法通常被廣泛應(yīng)用?()A.主成分分析(PCA)B.線性判別分析(LDA)C.因子分析D.獨(dú)立成分分析(ICA)8、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。假設(shè)我們有一個(gè)數(shù)據(jù)集,包含了房屋的面積、房間數(shù)量、地理位置等特征,以及對(duì)應(yīng)的房?jī)r(jià)。如果我們想要使用監(jiān)督學(xué)習(xí)算法來(lái)預(yù)測(cè)新房屋的價(jià)格,以下哪種算法可能是最合適的()A.K-Means聚類(lèi)算法B.決策樹(shù)算法C.主成分分析(PCA)D.獨(dú)立成分分析(ICA)9、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以10、在特征工程中,獨(dú)熱編碼(One-HotEncoding)用于()A.處理類(lèi)別特征B.處理數(shù)值特征C.降維D.以上都不是11、假設(shè)正在進(jìn)行一個(gè)圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對(duì)抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成12、某研究團(tuán)隊(duì)正在開(kāi)發(fā)一個(gè)語(yǔ)音識(shí)別系統(tǒng),需要對(duì)語(yǔ)音信號(hào)進(jìn)行特征提取。以下哪種特征在語(yǔ)音識(shí)別中被廣泛使用?()A.梅爾頻率倒譜系數(shù)(MFCC)B.線性預(yù)測(cè)編碼(LPC)C.感知線性預(yù)測(cè)(PLP)D.以上特征都常用13、在進(jìn)行特征工程時(shí),如果特征之間存在共線性,即一個(gè)特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對(duì)特征進(jìn)行主成分分析C.對(duì)特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以14、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類(lèi)支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類(lèi)的異常檢測(cè),將遠(yuǎn)離聚類(lèi)中心的點(diǎn)視為異常,但聚類(lèi)效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合15、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器16、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通常可以使用交叉驗(yàn)證技術(shù)來(lái)評(píng)估不同模型和超參數(shù)組合的性能。假設(shè)有一個(gè)分類(lèi)模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗(yàn)證,以下關(guān)于K的選擇,哪一項(xiàng)是不太合理的?()A.K=5,平衡計(jì)算成本和評(píng)估準(zhǔn)確性B.K=2,快速得到初步的評(píng)估結(jié)果C.K=10,提供更可靠的評(píng)估D.K=n(n為樣本數(shù)量),確保每個(gè)樣本都用于驗(yàn)證一次17、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個(gè)重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹(shù)B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)18、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),我們經(jīng)常使用混淆矩陣來(lái)分析模型的性能。假設(shè)一個(gè)二分類(lèi)問(wèn)題的混淆矩陣如下:()預(yù)測(cè)為正類(lèi)預(yù)測(cè)為負(fù)類(lèi)實(shí)際為正類(lèi)8020實(shí)際為負(fù)類(lèi)1090那么該模型的準(zhǔn)確率是多少()A.80%B.90%C.70%D.85%19、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)文本進(jìn)行情感分類(lèi),同時(shí)考慮文本的上下文信息和語(yǔ)義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機(jī)制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語(yǔ)言模型(如BERT)微調(diào)D.以上模型都有可能20、在一個(gè)多分類(lèi)問(wèn)題中,如果類(lèi)別之間存在層次關(guān)系,以下哪種分類(lèi)方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類(lèi)B.一對(duì)一分類(lèi)C.一對(duì)多分類(lèi)D.以上方法都可以二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)什么是強(qiáng)化學(xué)習(xí)?它與監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)有何不同?2、(本題5分)談?wù)勗谔煳膶W(xué)中,機(jī)器學(xué)習(xí)的應(yīng)用。3、(本題5分)解釋機(jī)器學(xué)習(xí)在能源管理中的優(yōu)化策略。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用CNN對(duì)人臉表情進(jìn)行識(shí)別。2、(本題5分)通過(guò)神經(jīng)網(wǎng)絡(luò)模型對(duì)腦電圖(EEG)數(shù)據(jù)進(jìn)行分析。3、(本題5分)借助美容美發(fā)行業(yè)數(shù)據(jù)為客戶提供個(gè)性化造型建議。4、(本題5分)借助糖尿病相關(guān)數(shù)據(jù)研究疾
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆天津市和平區(qū)第一中學(xué)高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析
- 2025屆黑龍江省哈爾濱第六中學(xué)高三沖刺模擬英語(yǔ)試卷含解析
- 廣東省廣州市增城區(qū)四校聯(lián)考2025屆高考語(yǔ)文押題試卷含解析
- 福建省廈門(mén)市第六中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷含解析
- 2025屆浙江省金華市名校高考適應(yīng)性考試數(shù)學(xué)試卷含解析
- 甘肅省隴南市徽縣第二中學(xué)2025屆高三第六次模擬考試英語(yǔ)試卷含解析
- 2025屆廣西北海市普通高中高三二診模擬考試數(shù)學(xué)試卷含解析
- 2025屆河北省巨鹿縣第二中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析
- 工作總結(jié)之化工實(shí)習(xí)總結(jié)3000字
- 電工電子技術(shù)(第3版) 課件 5.2三極管
- 臥式儲(chǔ)罐焊接結(jié)構(gòu)和工藝設(shè)計(jì)
- 四川省中小學(xué)教育技術(shù)裝備標(biāo)準(zhǔn)
- 暖通工程施工組織專(zhuān)項(xiàng)設(shè)計(jì)方案
- 鐵路超限超重貨物運(yùn)輸規(guī)則(2012)
- 《如何成為一個(gè)頂尖的銷(xiāo)售人員》(PPT54頁(yè))
- 苯乙烯_馬來(lái)酸酐接枝聚乙烯蠟的研究
- SL702015灌溉與排水工程規(guī)范施工質(zhì)量評(píng)定表修正
- 船板認(rèn)證基礎(chǔ)知識(shí)
- 利用基本不等式求最值的常見(jiàn)方法ppt課件
- 美卓山特維克破碎機(jī)配件2
- DesignBuilder操作手冊(cè)(完結(jié)
評(píng)論
0/150
提交評(píng)論