2025屆遼寧省沈陽市大東區(qū)高考數(shù)學(xué)一模試卷含解析_第1頁
2025屆遼寧省沈陽市大東區(qū)高考數(shù)學(xué)一模試卷含解析_第2頁
2025屆遼寧省沈陽市大東區(qū)高考數(shù)學(xué)一模試卷含解析_第3頁
2025屆遼寧省沈陽市大東區(qū)高考數(shù)學(xué)一模試卷含解析_第4頁
2025屆遼寧省沈陽市大東區(qū)高考數(shù)學(xué)一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆遼寧省沈陽市大東區(qū)高考數(shù)學(xué)一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,分別為所對(duì)的邊,若函數(shù)有極值點(diǎn),則的范圍是()A. B.C. D.2.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.3.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.64.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.5.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說法中錯(cuò)誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬元6.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長度,若,,則()A. B.C.6 D.7.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.118.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則9.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.10.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位11.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.12.如圖,在平行四邊形中,為對(duì)角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有兩個(gè)極值點(diǎn)、,則的取值范圍為_________.14.已知雙曲線C:()的左、右焦點(diǎn)為,,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為______.15.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點(diǎn)的四面體的外接球的體積為________.16.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足:對(duì)任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項(xiàng)公式;(3)設(shè),,求證:若成等差數(shù)列,則也成等差數(shù)列.18.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.19.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.20.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.21.(12分)已知橢圓過點(diǎn)且橢圓的左、右焦點(diǎn)與短軸的端點(diǎn)構(gòu)成的四邊形的面積為.(1)求橢圓C的標(biāo)準(zhǔn)方程:(2)設(shè)A是橢圓的左頂點(diǎn),過右焦點(diǎn)F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點(diǎn)為E.①求證:;②記,,的面積分別為、、,求證:為定值.22.(10分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項(xiàng)和為,滿足,且成等差數(shù)列.(1)求的通項(xiàng)公式;(2)若數(shù)列滿足,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】試題分析:由已知可得有兩個(gè)不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個(gè)不等實(shí)根,從而可得.2、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點(diǎn)存在性定理可知,函數(shù)g(x)的零點(diǎn)所在的區(qū)間是(0,1),故選B.3、A【解析】

作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.4、D【解析】

根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.5、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬元,故項(xiàng)錯(cuò)誤.綜上,故選.6、D【解析】

先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡單題目.7、A【解析】

根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.8、D【解析】試題分析:,,故選D.考點(diǎn):點(diǎn)線面的位置關(guān)系.9、B【解析】

推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、D【解析】

根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.11、D【解析】

利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因?yàn)?,,,所以的周期?,故,故的虛部為2,A錯(cuò)誤;在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第二象限,B錯(cuò)誤;的共軛復(fù)數(shù)為,C錯(cuò)誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識(shí),是一道基礎(chǔ)題.12、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問題,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

確定函數(shù)的定義域,求導(dǎo)函數(shù),利用極值的定義,建立方程,結(jié)合韋達(dá)定理,即可求的取值范圍.【詳解】函數(shù)的定義域?yàn)?,,依題意,方程有兩個(gè)不等的正根、(其中),則,由韋達(dá)定理得,,所以,令,則,,當(dāng)時(shí),,則函數(shù)在上單調(diào)遞減,則,所以,函數(shù)在上單調(diào)遞減,所以,.因此,的取值范圍是.故答案為:.【點(diǎn)睛】本題考查了函數(shù)極值點(diǎn)問題,考查了函數(shù)的單調(diào)性、最值,將的取值范圍轉(zhuǎn)化為以為自變量的函數(shù)的值域問題是解答的關(guān)鍵,考查計(jì)算能力,屬于中等題.14、【解析】

由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.【點(diǎn)睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.15、【解析】

將三棱錐置入正方體中,利用正方體體對(duì)角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對(duì)角線長為,所以外接球半徑為,其體積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時(shí),要考慮是否能將其置入正(長)方體中,是一道中檔題.16、【解析】

求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點(diǎn)O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設(shè),由題,得,又,所以,則點(diǎn)C在以AB為直徑的圓上,取AB的中點(diǎn)為M,則,設(shè)以AB為直徑的圓與線段OM的交點(diǎn)為E,則的最小值是,因?yàn)?,又,所以的最小值?故答案為:【點(diǎn)睛】本題主要考查向量的綜合應(yīng)用問題,涉及到圓的相關(guān)知識(shí)與余弦定理,考查學(xué)生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3;(2);(3)見解析.【解析】

(1)依據(jù)下標(biāo)的關(guān)系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項(xiàng)公式知,求出首項(xiàng)和公比即可。利用關(guān)系式,列出方程,可以解出首項(xiàng)和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因?yàn)閷?duì)任意,都有,所以,,兩式相加,,解得;(2)設(shè)等比數(shù)列的首項(xiàng)為,公比為,因?yàn)閷?duì)任意,都有,所以有,解得,又,即有,化簡得,,即,或,因?yàn)椋喌茫怨?。?)因?yàn)閷?duì)任意,都有,所以有,成等差數(shù)列,設(shè)公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列?!军c(diǎn)睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應(yīng)用,意在考查學(xué)生的邏輯推理,數(shù)學(xué)建模,綜合運(yùn)用數(shù)列知識(shí)的能力。18、(1)證明見解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點(diǎn)D,連接BD,以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,分別計(jì)算平面的法向量為與平面的法向量為,利用夾角公式計(jì)算即可.【詳解】(1)在中,,所以,即.因?yàn)?,,,所?所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點(diǎn)D,連接BD,則.以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點(diǎn)睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問題,在利用向量法時(shí),關(guān)鍵是點(diǎn)的坐標(biāo)要寫準(zhǔn)確,本題是一道中檔題.19、;.【解析】

連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時(shí),有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.20、(1)見證明;(2)【解析】

(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,設(shè),,,,而,即,.以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立如圖的空間坐標(biāo)系,則,,設(shè)平面的法向量為,由得,取,得,,同理可求得平面的法向量為,設(shè)二面角的平面角為,則,所以二面角的余弦值為.【點(diǎn)睛】本題考查了兩平面垂直的判定,考查了利用空間向量的方法求二面角,考查了棱錐的體積的計(jì)算,考查了空間想象能力及計(jì)算能力,屬于中檔題.21、(1);(2)①證明見解析;②證明見解析【解析】

(1)解方程即可;(2)①設(shè)直線,,,將點(diǎn)的坐標(biāo)用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標(biāo)準(zhǔn)方程為:(2)①,,設(shè)直線代入橢圓方程:設(shè),,,直線,直線,,,,,.②,所以.【點(diǎn)睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論