上海外國(guó)語(yǔ)大學(xué)附屬中學(xué)2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第1頁(yè)
上海外國(guó)語(yǔ)大學(xué)附屬中學(xué)2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第2頁(yè)
上海外國(guó)語(yǔ)大學(xué)附屬中學(xué)2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第3頁(yè)
上海外國(guó)語(yǔ)大學(xué)附屬中學(xué)2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第4頁(yè)
上海外國(guó)語(yǔ)大學(xué)附屬中學(xué)2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海外國(guó)語(yǔ)大學(xué)附屬中學(xué)2025屆高三下學(xué)期聯(lián)考數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.盒子中有編號(hào)為1,2,3,4,5,6,7的7個(gè)相同的球,從中任取3個(gè)編號(hào)不同的球,則取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率是()A. B. C. D.2.已知m為實(shí)數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.已知,則下列不等式正確的是()A. B.C. D.4.將函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒(méi)有零點(diǎn),則的取值范圍是()A. B.C. D.5.設(shè)全集,集合,.則集合等于()A. B. C. D.6.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.127.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱(chēng)為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.8.已知,是兩條不重合的直線,是一個(gè)平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.110.已知雙曲線的右焦點(diǎn)為F,過(guò)右頂點(diǎn)A且與x軸垂直的直線交雙曲線的一條漸近線于M點(diǎn),MF的中點(diǎn)恰好在雙曲線C上,則C的離心率為()A. B. C. D.11.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或12.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱(chēng)點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)2次拋擲一顆質(zhì)地均勻的骰子(六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點(diǎn)數(shù),則事件“點(diǎn)數(shù)之積是3的倍數(shù)”的概率為_(kāi)___.14.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.15.函數(shù)在的零點(diǎn)個(gè)數(shù)為_(kāi)________.16.在數(shù)列中,,,曲線在點(diǎn)處的切線經(jīng)過(guò)點(diǎn),下列四個(gè)結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號(hào)是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.18.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,直線過(guò)點(diǎn),且與拋物線交于,兩點(diǎn).(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)求的最大值.19.(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對(duì)任意的有.20.(12分)已知在中,a、b、c分別為角A、B、C的對(duì)邊,且.(1)求角A的值;(2)若,設(shè)角,周長(zhǎng)為y,求的最大值.21.(12分)在中,角、、所對(duì)的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.22.(10分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個(gè)極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、A【解析】

根據(jù)直線平行的等價(jià)條件,求出m的值,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】當(dāng)m=1時(shí),兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當(dāng)m=0時(shí),兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當(dāng)m≠0時(shí),則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點(diǎn)睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價(jià)條件,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)本題也可以利用下面的結(jié)論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗(yàn)看兩直線是否重合.3、D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng).【詳解】已知,賦值法討論的情況:(1)當(dāng)時(shí),令,,則,,排除B、C選項(xiàng);(2)當(dāng)時(shí),令,,則,排除A選項(xiàng).故選:D.【點(diǎn)睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng),是一種簡(jiǎn)單有效的方法,屬于中等題.4、A【解析】

根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,可得的圖象,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒(méi)有零點(diǎn),∴,∴,,解得,又,解得,當(dāng)k=0時(shí),解,當(dāng)k=-1時(shí),,可得,.故答案為:A.【點(diǎn)睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點(diǎn)問(wèn)題,此類(lèi)問(wèn)題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.5、A【解析】

先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.【點(diǎn)睛】本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.6、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來(lái),繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.7、B【解析】

初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.8、D【解析】

利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線,還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或.故選:D.【點(diǎn)睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.9、A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.10、A【解析】

設(shè),則MF的中點(diǎn)坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,M所在直線為,不妨設(shè),∴MF的中點(diǎn)坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意構(gòu)造的齊次方程.11、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.12、D【解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個(gè)公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱(chēng)點(diǎn)在上,即曲線與有兩個(gè)公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí)取得極大值,也即為最大值,當(dāng)時(shí),;當(dāng)時(shí),,所以滿足條件.故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】總事件數(shù)為,目標(biāo)事件:當(dāng)?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當(dāng)?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標(biāo)事件共20中,所以。14、【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱(chēng)性,考慮時(shí)的情況,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱(chēng)性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫(huà)出圖像是解題的關(guān)鍵.15、1【解析】

本問(wèn)題轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問(wèn)題,在同一直角坐標(biāo)系內(nèi),畫(huà)出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問(wèn)題函數(shù)在的零點(diǎn)個(gè)數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問(wèn)題.在同一直角坐標(biāo)系內(nèi),畫(huà)出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.16、①③④【解析】

先利用導(dǎo)數(shù)求得曲線在點(diǎn)處的切線方程,由此求得與的遞推關(guān)系式,進(jìn)而證得數(shù)列是等比數(shù)列,由此判斷出四個(gè)結(jié)論中正確的結(jié)論編號(hào).【詳解】∵,∴曲線在點(diǎn)處的切線方程為,則.∵,∴,則是首項(xiàng)為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號(hào)是①③④.故答案為:①③④【點(diǎn)睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項(xiàng)公式和前項(xiàng)和公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】

(1)設(shè),,注意到在上單增,再利用零點(diǎn)存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.【詳解】(1)由已知,,所以,設(shè),,當(dāng)時(shí),單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點(diǎn),當(dāng)時(shí),;當(dāng)時(shí),;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點(diǎn),即在區(qū)間上存在唯一的極小值點(diǎn);(2)設(shè),,,∴在單調(diào)遞增,,即,從而,因?yàn)楹瘮?shù)在上單調(diào)遞減,∴在上恒成立,令,∵,∴,在上單調(diào)遞減,,當(dāng)時(shí),,則在上單調(diào)遞減,,符合題意.當(dāng)時(shí),在上單調(diào)遞減,所以一定存在,當(dāng)時(shí),,在上單調(diào)遞增,與題意不符,舍去.綜上,的取值范圍是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)、不等式恒成立問(wèn)題,在處理恒成立問(wèn)題時(shí),通常是構(gòu)造函數(shù),轉(zhuǎn)化成函數(shù)的最值來(lái)處理,本題是一道較難的題.18、(1),;(2)1.【解析】

(1)根據(jù)拋物線上的點(diǎn)到焦點(diǎn)和準(zhǔn)線的距離相等,可得p值,即可求拋物線C的方程從而可得解;(2)設(shè)直線l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設(shè)A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點(diǎn)F是拋物線y2=2px(p>0)的焦點(diǎn),P(2,y0)是拋物線上一點(diǎn),|PF|=3,∴23,解得:p=2,∴拋物線C的方程為y2=4x,∵點(diǎn)P(2,n)(n>0)在拋物線C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設(shè)直線l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設(shè)A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個(gè)不同實(shí)根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當(dāng)m時(shí),取最大值1.【點(diǎn)睛】本題考查拋物線方程的求法,考查向量的數(shù)量積的最大值的求法,考查拋物線、直線方程、韋達(dá)定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題.19、(1)答案見(jiàn)解析.(2)答案見(jiàn)解析【解析】

(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解.(2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時(shí),,故在單調(diào)遞減.(2)首先證,令,則單調(diào)遞增,且,所以再令,所以單調(diào)遞增,即,∴【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.20、(1);(2).【解析】

(1)利用正弦定理,結(jié)合題中條件,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論