貴州省黔西南自治州興仁市鳳凰中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

貴州省黔西南自治州興仁市鳳凰中學(xué)2025屆高三二診模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.42.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.3.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個(gè)半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.4.一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.5.體育教師指導(dǎo)4個(gè)學(xué)生訓(xùn)練轉(zhuǎn)身動(dòng)作,預(yù)備時(shí),4個(gè)學(xué)生全部面朝正南方向站成一排.訓(xùn)練時(shí),每次都讓3個(gè)學(xué)生“向后轉(zhuǎn)”,若4個(gè)學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.66.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.7.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.968.在中,,,,若,則實(shí)數(shù)()A. B. C. D.9.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對(duì)稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()10.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.11.已知向量,是單位向量,若,則()A. B. C. D.12.在邊長為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是公差不為0的等差數(shù)列的前項(xiàng)和,且,則______.14.已知兩點(diǎn),,若直線上存在點(diǎn)滿足,則實(shí)數(shù)滿足的取值范圍是__________.15.的展開式中,x5的系數(shù)是_________.(用數(shù)字填寫答案)16.在中,角所對(duì)的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的對(duì)邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.18.(12分)直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.(1)求的方程;(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時(shí),求直線的方程.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)任意成立,求實(shí)數(shù)的取值范圍.20.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.22.(10分)數(shù)列的前項(xiàng)和為,且.數(shù)列滿足,其前項(xiàng)和為.(1)求數(shù)列與的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

模擬程序運(yùn)行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當(dāng)時(shí),,此時(shí)不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時(shí)模擬程序運(yùn)行,觀察變量值的變化,確定程序功能,可得結(jié)論.2、B【解析】

由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個(gè)交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個(gè)交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會(huì)大大增加,甚至沒法求解.3、A【解析】由題意得到該幾何體是一個(gè)組合體,前半部分是一個(gè)高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個(gè)底面半徑為2的半個(gè)圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.4、C【解析】

根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點(diǎn)睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.5、B【解析】

通過列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點(diǎn)睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.6、A【解析】

根據(jù)圖象關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱圖象關(guān)于對(duì)稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對(duì)稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.7、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.8、D【解析】

將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.9、B【解析】

根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對(duì)稱軸,得出,求出的最小值與對(duì)應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對(duì)稱軸和對(duì)稱點(diǎn),在對(duì)稱軸處取得最值,對(duì)稱點(diǎn)處函數(shù)值為零,屬于較易題目.10、D【解析】

根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類,利用則,列方程,化簡后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.11、C【解析】

設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.12、C【解析】

根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C【點(diǎn)睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】

先由,可得,再結(jié)合等差數(shù)列的前項(xiàng)和公式求解即可.【詳解】解:因?yàn)?,所以?故答案為:18.【點(diǎn)睛】本題考查了等差數(shù)列基本量的運(yùn)算,重點(diǎn)考查了等差數(shù)列的前項(xiàng)和公式,屬基礎(chǔ)題.14、【解析】

問題轉(zhuǎn)化為求直線與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【詳解】解:直線,點(diǎn),,直線上存在點(diǎn)滿足,的軌跡方程是.如圖,直線與圓有公共點(diǎn),圓心到直線的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.15、-189【解析】由二項(xiàng)式定理得,令r=5得x5的系數(shù)是.16、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點(diǎn)睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長的范圍問題.屬于中檔題.18、(1);(2)【解析】

(1)設(shè)出兩點(diǎn)的坐標(biāo),由距離之積為16,可得.利用向量的數(shù)量積坐標(biāo)運(yùn)算,將轉(zhuǎn)化為.再利用兩點(diǎn)均在拋物線上,即可求得p的值,從而求出拋物線的方程;(2)設(shè)出直線l的方程,代入拋物線方程,由韋達(dá)定理發(fā)現(xiàn)直線l恒過定點(diǎn),將面積用參數(shù)t表示,求出其最值,并得出此時(shí)的直線方程.【詳解】解:(1)由題設(shè),因?yàn)?,到軸的距離的積為,所以,又因?yàn)椋?,,所以拋物線的方程為.(2)因?yàn)橹本€與拋物線兩個(gè)公共點(diǎn),所以的斜率不為,所以設(shè)聯(lián)立,得,即,,即直線恒過定點(diǎn),所以,當(dāng)時(shí),面積取得最小值,此時(shí).【點(diǎn)睛】本題考查了拋物線的標(biāo)準(zhǔn)方程的求法,直線與拋物線相交的問題,其中垂直條件的轉(zhuǎn)化,直線過定點(diǎn)均為該題的關(guān)鍵,屬于綜合性較強(qiáng)的題.19、(1)(2)【解析】

(1)把代入,利用零點(diǎn)分段討論法求解;(2)對(duì)任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解:(1)當(dāng)時(shí),不等式可化為.討論:①當(dāng)時(shí),,所以,所以;②當(dāng)時(shí),,所以,所以;③當(dāng)時(shí),,所以,所以.綜上,當(dāng)時(shí),不等式的解集為.(2)因?yàn)?,所?又因?yàn)椋瑢?duì)任意成立,所以,所以或.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查含有絕對(duì)值不等式的解法及恒成立問題,恒成立問題一般是轉(zhuǎn)化為最值問題求解,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1)見證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.21、(I)|FP|=2-32x【解析】

(I)直接利用兩點(diǎn)間距離公式化簡得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點(diǎn)O到直線l的距離為d=m【點(diǎn)睛】本題考查了橢圓內(nèi)的線段長度,定值問題,意在考查學(xué)生的計(jì)算能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論