2025屆廣西壯族自治區(qū)桂林市高考數(shù)學(xué)四模試卷含解析_第1頁(yè)
2025屆廣西壯族自治區(qū)桂林市高考數(shù)學(xué)四模試卷含解析_第2頁(yè)
2025屆廣西壯族自治區(qū)桂林市高考數(shù)學(xué)四模試卷含解析_第3頁(yè)
2025屆廣西壯族自治區(qū)桂林市高考數(shù)學(xué)四模試卷含解析_第4頁(yè)
2025屆廣西壯族自治區(qū)桂林市高考數(shù)學(xué)四模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆廣西壯族自治區(qū)桂林市高考數(shù)學(xué)四模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.62.下列函數(shù)中既關(guān)于直線對(duì)稱(chēng),又在區(qū)間上為增函數(shù)的是()A.. B.C. D.3.已知函數(shù),關(guān)于x的方程f(x)=a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)4.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.365.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.6.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.7.下列四個(gè)圖象可能是函數(shù)圖象的是()A. B. C. D.8.已知全集,集合,則()A. B. C. D.9.函數(shù)在上的大致圖象是()A. B.C. D.10.若復(fù)數(shù)滿(mǎn)足,則()A. B. C.2 D.11.設(shè),則關(guān)于的方程所表示的曲線是()A.長(zhǎng)軸在軸上的橢圓 B.長(zhǎng)軸在軸上的橢圓C.實(shí)軸在軸上的雙曲線 D.實(shí)軸在軸上的雙曲線12.中,,為的中點(diǎn),,,則()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值為_(kāi)___14.正方形的邊長(zhǎng)為2,圓內(nèi)切于正方形,為圓的一條動(dòng)直徑,點(diǎn)為正方形邊界上任一點(diǎn),則的取值范圍是______.15.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為_(kāi)__________.16.(x+y)(2x-y)5的展開(kāi)式中x3y3的系數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點(diǎn).(1)證明:;(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線與直線所成的角最小時(shí),求三棱錐的體積.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)任意成立,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.20.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.21.(12分)在中,,是邊上一點(diǎn),且,.(1)求的長(zhǎng);(2)若的面積為14,求的長(zhǎng).22.(10分)已知中,,,是上一點(diǎn).(1)若,求的長(zhǎng);(2)若,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點(diǎn)睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡(jiǎn)單的組合問(wèn)題,是一中檔題.2、C【解析】

根據(jù)函數(shù)的對(duì)稱(chēng)性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時(shí),,所以不關(guān)于直線對(duì)稱(chēng),則錯(cuò)誤;B中,,所以在區(qū)間上為減函數(shù),則錯(cuò)誤;D中,,而,則,所以不關(guān)于直線對(duì)稱(chēng),則錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對(duì)稱(chēng)性和單調(diào)性,屬于基礎(chǔ)題.3、D【解析】

原問(wèn)題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對(duì)g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時(shí),g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個(gè)不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問(wèn)題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問(wèn)題轉(zhuǎn)化為通過(guò)導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問(wèn)題.4、D【解析】

由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.5、B【解析】

方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿(mǎn)足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.6、A【解析】

根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.7、C【解析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個(gè)單位而得到,因?yàn)闉槠婧瘮?shù),即可得到函數(shù)圖象關(guān)于對(duì)稱(chēng),即可排除A、D,再根據(jù)時(shí)函數(shù)值,排除B,即可得解.【詳解】∵的定義域?yàn)椋鋱D象可由的圖象沿軸向左平移1個(gè)單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng),∴的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng).可排除A、D項(xiàng).當(dāng)時(shí),,∴B項(xiàng)不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識(shí)圖能力,一般根據(jù)四個(gè)選擇項(xiàng)來(lái)判斷對(duì)應(yīng)的函數(shù)性質(zhì),即可排除三個(gè)不符的選項(xiàng),屬于中檔題.8、D【解析】

根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問(wèn)題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.9、D【解析】

討論的取值范圍,然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時(shí),,故切線的斜率變小,當(dāng)時(shí),,故切線的斜率變大,可排除A、B;當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時(shí),,故切線的斜率變大,當(dāng)時(shí),,故切線的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識(shí)別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.10、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.11、C【解析】

根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類(lèi)型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實(shí)軸在y軸上的雙曲線,

故選C.【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.12、D【解析】

在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

根據(jù)的正負(fù)值,代入對(duì)應(yīng)的函數(shù)解析式求解即可.【詳解】解:.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)函數(shù)值的求解,是基礎(chǔ)題.14、【解析】

根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點(diǎn)睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運(yùn)算,關(guān)鍵在于恰當(dāng)?shù)貙?duì)向量進(jìn)行轉(zhuǎn)換,便于計(jì)算解題.15、【解析】

取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時(shí),弦的長(zhǎng)才最大.【詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.16、40【解析】

先求出的展開(kāi)式的通項(xiàng),再求出即得解.【詳解】設(shè)的展開(kāi)式的通項(xiàng)為,令r=3,則,令r=2,則,所以展開(kāi)式中含x3y3的項(xiàng)為.所以x3y3的系數(shù)為40.故答案為:40【點(diǎn)睛】本題主要考查二項(xiàng)式定理求指定項(xiàng)的系數(shù),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2).【解析】

(1)要證明,只需證明平面即可;(2)以C為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立空間直角坐標(biāo)系,利用向量法求,并求其最大值從而確定出使問(wèn)題得到解決.【詳解】(1)連結(jié)AC、AE,由已知,四邊形ABCE為正方形,則①,因?yàn)榈酌?,則②,由①②知平面,所以.(2)以C為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,,所以,,,設(shè),,則,所以,設(shè),則,所以當(dāng),即時(shí),取最大值,從而取最小值,即直線與直線所成的角最小,此時(shí),則,因?yàn)?,,則平面,從而M到平面的距離,所以.【點(diǎn)睛】本題考查線面垂直證線線垂直、異面直線直線所成角計(jì)算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內(nèi)容較多,計(jì)算量較大,解決此類(lèi)問(wèn)題最關(guān)鍵是準(zhǔn)確寫(xiě)出點(diǎn)的坐標(biāo),是一道中檔題.18、(1)(2)【解析】

(1)把代入,利用零點(diǎn)分段討論法求解;(2)對(duì)任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解:(1)當(dāng)時(shí),不等式可化為.討論:①當(dāng)時(shí),,所以,所以;②當(dāng)時(shí),,所以,所以;③當(dāng)時(shí),,所以,所以.綜上,當(dāng)時(shí),不等式的解集為.(2)因?yàn)椋?又因?yàn)?,?duì)任意成立,所以,所以或.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查含有絕對(duì)值不等式的解法及恒成立問(wèn)題,恒成立問(wèn)題一般是轉(zhuǎn)化為最值問(wèn)題求解,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).19、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】

(1)對(duì)函數(shù)求導(dǎo),對(duì)參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡(jiǎn)換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)既無(wú)極大值,也無(wú)極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無(wú)極小值;若,則,令,解得,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,此時(shí)函數(shù)有極大值,無(wú)極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點(diǎn)睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問(wèn)題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.20、(1)見(jiàn)解析(2)【解析】

(1)通過(guò)勾股定理得出,又,進(jìn)而可得平面,則可得到,問(wèn)題得證;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫?,所以,又因?yàn)椋?,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【點(diǎn)睛】本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力,是中檔題.21、(1)1;(2)5.【解析】

(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因?yàn)榈拿娣e為14,所以,即,得.在中

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論