歷年高考數(shù)學(xué)試題(向量)_第1頁(yè)
歷年高考數(shù)學(xué)試題(向量)_第2頁(yè)
歷年高考數(shù)學(xué)試題(向量)_第3頁(yè)
歷年高考數(shù)學(xué)試題(向量)_第4頁(yè)
歷年高考數(shù)學(xué)試題(向量)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1212.已知向量a、b滿(mǎn)足間=1,|b|=4,且ab=2,則a與b的夾角為歷年高考數(shù)學(xué)試題向量一、選擇題,在每小題給出的四個(gè)選擇題只有一項(xiàng)是符合題目要求的。51.已知向量a二(1,2),b(一2,-4),1c1=*5,右(a+b)?c=-,則a與c的夾角為()乙A.30° B.60° C.120°D.150°2.已知向量a,b,且赤=2+2bJC=-5^+6b,CD=7^-2瓦則一定共線(xiàn)的三點(diǎn)是()(A)A、B、D(B)A、B、C(C)B、C、D(D)A、C、D3.已知A(3,1),B(6,1),C(4,3),D為線(xiàn)段BC的中點(diǎn),則向量AC與DA的夾角為(兀 4A--arccos兀 4A--arccos一2 54Barccos—B. 5C.arccos(-1)D.-arccos(-4).若l〃l=l,lBl=2,c=〃+反且。la,則向量a與b的夾角為()(A)30° (B)60° (C)120° (D)150°.已知向量a關(guān)e,|e|=1滿(mǎn)足:對(duì)任意twR,恒有|a-te|2|a-e|.則()A.ale B.al(a-e) C.el(a-e) D.(a+e)l(a-e)5.已知向量a=(1,2),b(-2,-4),lc1=v5,右(a+b)?c=-,則a與c的夾角為()乙A.30° B.60° C.120° D.150°.設(shè)向量a=(-1,2),b=(2,-1),則?b)(a+b)等于()A.(1,1) B.(-4,-4)C.-4 D.(-2,-2).若l〃l=l,lBl=2,c=〃+瓦且。La,則向量a與b的夾角為()(A)30° (B)60° (C)120° (D)150°.已知向量a=(-2,2),b=(5,k).若|a+b|不超過(guò)5,則k的取值范圍是()A.[-4,6] B.[-6,4] C.[-6,2] D.[-2,6]10.點(diǎn)010.點(diǎn)0是三角形ABC所在平面內(nèi)的一點(diǎn),滿(mǎn)足OA-OB=OB?OC=OC,OA則點(diǎn)O是AABC的()(內(nèi)三個(gè)內(nèi)角的角平分線(xiàn)的交點(diǎn)(0(內(nèi)三個(gè)內(nèi)角的角平分線(xiàn)的交點(diǎn)(0三條中線(xiàn)的交點(diǎn)電)三條邊的垂直平分線(xiàn)的交點(diǎn)(口)三條高的交點(diǎn)11.設(shè)平面向量a111.設(shè)平面向量a1、a、a的和a+a+a

23 123=0。如果向量4、b2、b3,滿(mǎn)足陽(yáng)=2|aj,且aj順時(shí)針旋轉(zhuǎn)30。后與b同向,其中i=1,2,3,則()iA-b+b+b=0.123B.b-b+b=0123Cb+b-b=0

.123D.b+b+b=0123TOC\o"1-5"\h\z(A)今 (B)j(C)J (D)y6 4 3 213.已知Ia1=21bI。0,且關(guān)于x的方程x2+|a|x+a?b=0有實(shí)根,則a與b的夾角的取值范圍是兀 兀 兀2兀 兀 「A.[0,三] B.[―,兀] C.*,—^-] D.[―,兀]6 3 3 3 6.已知等差數(shù)列{a}的前n項(xiàng)和為S,若OB^aOK+aOC,且A、B、C三點(diǎn)共線(xiàn)(該直線(xiàn)不過(guò)原點(diǎn)O),n n 1 200則s1()A.100B.101C.200D.201.AABC的三內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為a,b,j設(shè)向量>=Q+gb),,=(b—〃,c—a),若p〃q,則角C的大小為兀A一6AP=X荏.若瓦?蠢>PA^PB,則實(shí)數(shù)九16.設(shè)O(0,0),A(1,0),B(AP=X荏.若瓦?蠢>PA^PB,則實(shí)數(shù)九的取值范圍是A的取值范圍是A2-^-1B1-立-九-12.設(shè)向量a=(1,-2),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2G2(a-c),d的有向線(xiàn)段首尾相接能構(gòu)成四邊形,則向量d為(A)(2,6) (B)(-2.6) (C)(2,-6) (D)(-2,-6)TOC\o"1-5"\h\z.如圖,在平行四邊形ABCD中,下列結(jié)論中錯(cuò)誤的是( ) D(A)AB=DC;(B)AD+AB=AC; / /A(C)AB-AD=BD;(D)AD+CB=0..若a與Z?-c都是非零向量,則“Q?。=Q.?!笔恰啊╛L--c)”的(A)充分而不必要條件 (B)必要而不充分條件(C)充分必要條件 (D)既不充分也不必要條件.已知OA=1,OB=瓜OAOB=0,點(diǎn)C在NAOC=30。,設(shè)OC=mOA+nOB(m,neR),則'等于n(A)3 (B)3 (C)g(D)21.已知向量a=(3,1)b是不平行于x軸的單位向量,且a?b='<3,則b=A.(i— \史」22,A.(i— \史」22,k)B.(<nrS

22,k)I13VgC.I—,---

I44D.G,。)22.設(shè)過(guò)點(diǎn)P(x,y)的直線(xiàn)分別與x軸的正半軸和y軸的正半軸交于A、B兩點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于>軸對(duì)稱(chēng),O4 . 簞 ,為坐標(biāo)原點(diǎn),若BP=2PA,且OQ,AB=1則P點(diǎn)的軌跡方程是33x33x2+-y2=1(x>0,y>0)2<3x2-2y2=1(x>0,y>0)C.—xC.—x2-3y2=1(x>0,y>0)2D12x2+3y2=1(x>0,y>0)一!——7_ AB AC、一「ABAC123.已知非零向量AB與AC滿(mǎn)足(二+—)3C=0S——弓,則△ABC為()|AB||AC| |AB||AC|2人三邊均不相等的三角形 B.直角三角形C.等腰非等邊三角形 D.等邊三角形24.如圖,已知正六邊形PPPPPP,下列向量的數(shù)量積中最大的是123456(D)PPPP(D)PPPP12 1625.與向量a25.與向量a=-,-V22可的夾解相等,22)且模為1的向量是(A)(4 3、(4(A)(4 3、(4不-A或-E55)V5(C)(D)26.已知兩點(diǎn)M(—2,0)、26.已知兩點(diǎn)M(—2,0)、N(2,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿(mǎn)足IMNI-IMPI+MN?MP=0,則動(dòng)點(diǎn)P(x,y)的軌跡方程為()(B)y2=_8x(D)y2=-4x27.如圖1所示,D27.如圖1所示,D是AABC的邊AB上的中點(diǎn),則向量。D=()—’1一A-BC+-BA2-CBC-BA2—?1一B.-BC-BA2-D.BC+BA2a28.已知非零向量a、ba28.已知非零向量a、b,若a+2b與a-2b互相垂直,貝IJblB.41C.2D.229.設(shè)過(guò)點(diǎn)P(x,y)的直線(xiàn)分別與x軸的正半軸和y軸的正半軸交于A、B兩點(diǎn),若BP=2PA,KOQ?AB=1,則點(diǎn)p則點(diǎn)p的軌跡方程是()3A.3x2+-y2=1(x>0,y>0)23B1 3x2--y2=1(x>0,y>0)230.△30.△ABC的三內(nèi)角AB,C所對(duì)邊的長(zhǎng)分別為a,b,c.設(shè)向量P=(a+c, b),q= (b-a, c-a) .若p〃q,則角c的大小為nCnC,22nD-931.已知向量a、b滿(mǎn)足|a|=Lb|=4,,且a?b=2,則a與b的夾角為71A.671B71A.671B,471C,I71D-I32.設(shè)向量產(chǎn)(1「3池=(-2,4),若表示向量而、3b-設(shè),c的有向線(xiàn)段首尾相接能構(gòu)成三角形,則向量c為(1,-1)(-1,1)(1,-1)(-1,1)(-4,6)(D)(4,-6)33.設(shè)向量a與b的夾角為0,a=(3,3),2b-a=(-1,1),則cos034.設(shè)向量a,b,c滿(mǎn)足a+b+c-0,a±b,1a1=1,1b1=2,則Ic12=(A)1(C)4(D)5(A)1(C)4(D)535.已知三點(diǎn)A(2,3),B(-1,-1),C(6,k),其中k為常數(shù)。若AB=AC,則AB與AC的夾角為/24、(A)arccos(—-)乙J24arccos2524arccos—兀2/24、(A)arccos(—-)乙J24arccos2524arccos—兀2或兀-36.已知向量a與b的夾角為120。,2524arccos25|a|=3,a+b|=yn,則b等于(A)5(B)4(C)3—?37.已知向量a=(2,t),b=(1,2),若t=t1時(shí),(D)1—?a〃b;t=t2時(shí),a1b,則A.t=-4,t=-1B.t=-4,t=1D.t1=4,t2D.t1=4,t2=1MA圖1A若==則a=0或b=0B若…;=[則lj入=0或a=0c.t1=4,t2=-138如圖1:OM〃AB,點(diǎn)P由射線(xiàn)OM、線(xiàn)段OB及AB的延長(zhǎng)線(xiàn)圍成的陰影區(qū)域內(nèi)(不含邊界).且OP=xOA+yOB,則實(shí)數(shù)對(duì)(x,y)可以是B.(-3,|)D.(-5,5)一」一田「AB AC一「ABAC1…39.已知非零向量AB與AC滿(mǎn)足(二+二)^BC=0S—,==-,則IJAABC|AB||AC| |AB||AC|2為()從三邊均不相等的三角形 B.直角三角形C.等腰非等邊三角形 D.等邊三角形.設(shè)向量a,b,c滿(mǎn)足a+b+c=0,且a1b,|a|=1,|b|=2,則|c|2=(A)1(B)2(C)4(D)5.對(duì)于向量,a、b、c和實(shí)數(shù)I下列命題中真命題是2 .2C若’=’,則8=匕或。=-匕 D若口,,則b=c, 1 3,42.已知平面向量a=(1,1),b=(1,-1),則向量a---bB.(-2,1)A.(-2,B.(-2,1)(-1,0)(-1⑵43.在直角(-1,0)(-1⑵43.在直角AABC中,(A)M|2=Ac.AbCD是斜邊AB上的高,則下列等式不成立的是(B)|研=ba.Be(C)|AB「=AC.CD(D)CD2_(AC-AB)x(BA?BC)Ab44.若向量a與b不共線(xiàn),a?b中0,且c=a-b,則向量a與c的夾角為()nB,645.已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且2OA+OB+OC=0,那么(a.Ao=OD b.Ao=2OD c,Ao=30Dd.2Ao=OD46.連擲兩次骰子得到的點(diǎn)數(shù)分別為m和n,記向量a=(m,n)與向量b=(1,-1)的夾角為0,則?£046.連擲兩次骰子得到的點(diǎn)數(shù)分別為m和n,概率是(5A—.1247.已知向量a=(-5,6),b=(6,5),A.垂直B,A.垂直B,不垂直也不平行C.平行且同向D.平行且反向48.設(shè)F為拋物線(xiàn)>2=4x的焦點(diǎn),A,B,C48.設(shè)F為拋物線(xiàn)>2=4x的焦點(diǎn),A,〉 〉 )49.設(shè)A{a,1},B{2,b},C{4,5},為坐標(biāo)平面上三點(diǎn),O為坐標(biāo)原點(diǎn),若OA與OB在OC方向上的投影相同,則a與b滿(mǎn)足的關(guān)系式為4a-54a-5b=35a-4b=3 (C)4a+5b=14(D)5a+4b=1450,設(shè)兩個(gè)向量a50,設(shè)兩個(gè)向量a=(九+2,九2-cos2a)和b=(m)

m,——+sina九,其中兒ma為實(shí)數(shù),若a=2b,則一的m取值范圍是()A.B.[4A.B.[4,8]C.D.51.若非零向量a、b滿(mǎn)足la+bl=lbl,貝lj((A)l2al>l2a+bl(b)l2al<l2a+bl(C)l2bl>la+2bl(d)(A)l2al>l2a+bl(b)l2al<l2a+bl(C)l2bl>la+2bl(d)l2bl<la+2bl52.如右圖在四邊形ABCDIABI+IBDI+IDC1=4A.(-15,12) B.0 C.-3 D.-11A.(-15,12) B.0 C.-3 D.-11FIABI-IBDI+1BDI-IDC1=4F / ■ .AB?BD=BD?DC=0,則(AB+DC)-AC的值為()A、2A、2B、2<2 C、4D、4<21353.已知平面向量a=(1,1),b=(1,-1),則向量5a-萬(wàn)b=( )A.(-2,-1)B.(-2,1)C.(A.(-2,-1)B.(-2,1)C.(-1,0)D.(1,2)(A)(C)若非零向量61、b滿(mǎn)足1a|2b|>|a—2b||2a|>|2a-b|-b|=|b|,則()(B)|2b|<|a-2b|(D)|2a|<|2a—b|3B.256.若0、E、F是不共線(xiàn)的任意三點(diǎn),則以下各式中成立的是()A.EF=0F+0EB.EF=OF-OEC.EF=-OF+OED.EF=-OF-OE57.若向量a與b不共線(xiàn),a?b牛。,且c=a-[二JV3B.256.若0、E、F是不共線(xiàn)的任意三點(diǎn),則以下各式中成立的是()A.EF=0F+0EB.EF=OF-OEC.EF=-OF+OED.EF=-OF-OE57.若向量a與b不共線(xiàn),a?b牛。,且c=a-[二JVa*b)b,則向量a與c的夾角為()兀B?6兀D.258.已知向量OA=(4,6),OB=(3,5),且OC1OAAC〃OB,則向量OC=()(A)(B)[-24)V7,21)(C)(D))I7,21J59.已知a,b是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量c滿(mǎn)足(a-c)-(b-c)=0則Id的最大值是()(A)1(B)2(C)-v2<2(D)—60.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線(xiàn)段OD的中點(diǎn),AE的延長(zhǎng)線(xiàn)與CD交于點(diǎn)F.若AC=aBD=b,則AF=21B.—a+—b3 311C.-a+-b2 4若向量a、b滿(mǎn)足|a|=|b|=1,a與b的夾角為60°,則a?a+a?b=()1A.261.設(shè)a=(1,-2),b=(—3,4),c=(3,2),則(a+2b),c=()62.設(shè)D、E、F分別是AABC的三邊BC、CA、AB上的點(diǎn),且。C=2BD,CE=2EA,A尸=2FB,則ad+Jec方與BC()人.反向平行8.同向平行 C.互相垂直 D.既不平行也不垂直63.已知O,A,B是平面上的三個(gè)點(diǎn),B.-OA+20B64A.一.平面向量。b方向相同b共線(xiàn)的充要條件是I B.直線(xiàn)AB上有一點(diǎn)C,滿(mǎn)足2AC+CB=0,則次=()C2OA--OB d-1OA+-OB3 3 ,3 33Ja,b兩向量中至少有一個(gè)為零向量C.C.D.存在不全為零的實(shí)數(shù)?,%,\a+\b=0D.12 1 265.在△ABC中,AB=cAb=b.若點(diǎn)D滿(mǎn)足5D=2D。,則AD=()55B.3c-21C.b---c

3 312D.b++-c3 366.已知兩個(gè)單位向量a與b的夾角為135。,則U+九臼>1的充要條件是()(A)九(A)九£(0,V2)(B)九£(-x20)(C)九(C)九£(-8,0)U(%2+8)(D)九£(—8,—、?12)U(','2,+8)67.已知平面向量,67.已知平面向量,b=(-2,m),且a//b,則2a+3b=( )A、A、(-5,-10) B、(-4,-8)C、(-3,-6) D、(-2,-4)68.設(shè)a=(L—2),b=(—3,4),c=(3,2),則(a+2b),c=()A.(-15,12)A.(-15,12)B.0C.-3D.-1169.在AABC中,AB=3,AC=2,BC=<10,則AB?AC=(3A」223A」22B--32°,3一70.已知平面向量a=(1,-3),b=(4,A.-1B.1C.-2D.23D-2-2),九a+b與a垂直,則九是( )71.已知71.已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊向量m=(丘3,-1),n=(cosA,sinA),若m,n,且acosB+bcosA=csinC,則角A,B的大小分別為()兀兀 2兀兀兀兀 2兀兀(A)6,3 ⑻T,6兀兀?3,6(D)兀72.已知兩個(gè)單位向量a與b的夾角為-,則a+九b與九a-b互相垂直的充要條件是()A.九二-上丁或九二-z-B.九二一萬(wàn)或九二萬(wàn)C.九二-1或九=1D.九為任意實(shí)數(shù)22

73.已知向量a、b不共線(xiàn),c=攵a+ba£R),d=a—b,如果c〃d,那么( )A.左二1且c與d同向 B.左二1且c與d反向C.左二-1且c與d同向 D.左二-1且c與d反向.設(shè)a,b,c為同一平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿(mǎn)足a與b不共線(xiàn),a±c,Ia|=Ic|,則Ib-c1的值一定等于()A.以a,b為兩邊的三角形面積 B以b,c為兩邊的三角形面積C.以a,b為鄰邊的平行四邊形的面積 D以b,c為鄰邊的平行四邊形的面積.對(duì)于非零向量+B是“】//務(wù)”的【A】A,充分不必要條件 B,必要不充分條件C,充分必要條件 D,既不充分也不必要條件76.平面向量a與b的夾角為60。,〃=(2,0),問(wèn)=1則。+2。=()(A)<3 (B)2\'3 (C)4 (D)12.設(shè)a、b、c是單位向量,且a?b=0,則(a—cMb-c)的最小值為(D)(A)-2 (B)%'2-2 (C)-1 (D)1-v2.已知向量a=(2,1),a?b=10,1a+b1=5、J2,則Ib1=()A,<5 B,<10 C.5 D.25.設(shè)向量a,b滿(mǎn)足:IaI=3,IbI=4,a?b=0.以a,b,a-b的模為邊長(zhǎng)構(gòu)成三角形,則它的邊與半徑為1的圓的公共點(diǎn)個(gè)數(shù)最多為()A.3 B.4C,5D,6.已知|a|=1,b=6,a*(b-a)=2,則向量a與向量b的夾角是(兀A-6兀A-6兀B-4兀D-2.已知向量a=(1,0),b=(0,1),c=ka+b(keR),d=a-b,如果c//d,那么()A.k=1且c與d同向 B.k=1且c與d反向C.k=-1且c與d同向 D.k=-1且c與d反向.設(shè)a,b,C為同一平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿(mǎn)足a與b不共線(xiàn),alc,|a|=IbI,則Ib?bI的值一定等于()A.以b,b為鄰邊的平行四邊形的面積B,以b,b為兩邊的三角形面積

C.a,方為兩邊的三角形面積D,以a,a為鄰邊的平行四邊形的面積83.如圖1D,E,F分別是AABC的邊AB,BC,CA的中點(diǎn),貝U【A】a.AD+BE+CF=0B.BD-CE+DF=0C.AD-CE-CF=0D.BD-BE-FC=0 圖184.平面向量a與b的夾角為600,a=(2,0),|b|=1,則|a+2b|=()(A)<3 (B)2\3 (C)4 (D)1285.設(shè)非零向量a、b、c滿(mǎn)足Ia1=1b1=1cI,a+b=c,則<a,b>=()(A)150° (B)120° (C)60° (D)30°86.已知向量a=(2,1),a-b=10,|a+b|=5<2,則|b|二()(A)<5 (B)<10 (C)5 (D)2587.已知向量a=(1,2),b=(2,-3).若向量c滿(mǎn)足(c+a)//b,c1(a+b),則c=()a.(a.(9,3B.(-3,-9) C-(3,9) D.(-9,-3)39 39 9388.已知向量a=(1,1),b=(2,x),若a+b與4b-2a平行,則實(shí)數(shù)元的值是()A.-2B.0C.1D.2A.-2B.0C.1D.289.a,b為平面向量,已知a=(4,3),2a+b=(3,18),貝Ija,b夾角的余弦值等于()TOC\o"1-5"\h\z8 8 16 16(A)公 (B)—京 (C)/ (D)—京65 65 65 65.設(shè)向量a=(1,0),b=(1,1),則下列結(jié)論中正確的是( )(A)|a|=|b|(C)(A)|a|=|b|.已知AABC和點(diǎn)M滿(mǎn)足MMA+M1BMC=0.若存在實(shí)數(shù)m使得AB+AC=mAM成立,貝m二(A.2 B.3 C.4 D.5.在RtAABC中,/C=90,AC=4,則而AC:等于()A.-16 B.-8 C.8 D.16

93.平面上0,48三點(diǎn)不共線(xiàn),設(shè)OA=a,OB=b,則4oab的面積等于()(A)\:'laI2IbI2—(a?b)2 ⑻《\aI2IbI2+(ab)2、;laI、;laI2IbI2—(a?b)1(D)口《laI2IbI2+(a^b)94.ABCC中,點(diǎn)D在AB上,CD平方ZACB.若CB=a,CA=b,同=1,|b|=2,則CD=12 21 34 433a+3b (B)3a+3b (C)5a+5b (D)5a+5b95.設(shè)點(diǎn)M是線(xiàn)段BC的中點(diǎn),點(diǎn)A在直線(xiàn)BC外,BC2=16」AB+BC|=|Ab—BC|,則|AM|=()(A)8 (B)4 (C)2 (D)196.已知向量a,b滿(mǎn)足a?b=0,IaI=1,IbI=2,則12a-bI=()A、A、0 B、2y;2 c、4D、897.設(shè)向量a=(1,0),b=(1,1),則下列結(jié)論中正確的是((A)1al=(A)1al=1bl(C)a//b (D)a—b與b垂直.已知AACC和點(diǎn)M滿(mǎn)足MA+MB+MC=0.若存在實(shí)m使得AM+AC=mAM成立,則m=()TOC\o"1-5"\h\zA.2 B.3 C.4 D.5f — f — fff — f.若非零向量a、b滿(mǎn)足Ia1=1bI,(2a+b)?b=0,則a與b的夾角為()A.300 B,600 C,1200 D,150。.設(shè)點(diǎn)M是線(xiàn)段BC的中點(diǎn),點(diǎn)A在直線(xiàn)BC外,BC2=16,1AB+AC|=|AC-AC|則AM|=( )(A)8(B)4 (C)2 (D)1(A)8(B)4 (C)2 (D)18(A)65(A)8(A)65(A)(B)3 (C)2103.設(shè)A,A2.A3.A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),(D)6若AA二九AA(XeR),AA,四AA(四£R),且13 12 14 12101.a,b為平面向量,已知a=(4,3),2a+b=(3,18),貝Ija,b夾角的余弦值等于()8 16 16⑻一65 (C)65 ⑻一65102.若向量a=(3,m),b=(2,-1),a?b=0,則實(shí)數(shù)m的值為(1+-=2,則稱(chēng)A.A調(diào)和分割A(yù).A,一直平面上的點(diǎn)C.D調(diào)和分割點(diǎn)AC,則下面說(shuō)法正確的是()人口 14 13(A)C可能是線(xiàn)段A.B的中點(diǎn) (B)

c.D可能同時(shí)在線(xiàn)段A.B上C.D不可能同時(shí)在線(xiàn)段A.B的延長(zhǎng)線(xiàn)上104c.D可能同時(shí)在線(xiàn)段A.B上C.D不可能同時(shí)在線(xiàn)段A.B的延長(zhǎng)線(xiàn)上104.若向量a,b,c滿(mǎn)足a〃b且a,b,貝c?(a+2b)=(4105.若a,b32c均為單位向量,且a-b=00(a-c)?(b-c)<0,則Ia+b-cI的最大值為()A.2-1106.設(shè)向量。,4c滿(mǎn)足Ia\=\b\=l,a-b=--,<2-c,b-c>=60。,則ICI的最大值等于((A)2 (B)Y'3 (c)<2 (D)1107.設(shè)a,b是向量,命題“若a牛一b,則|a|=|b|"的逆命題是 ()(A)若a豐一b,則|a|豐|b|⑻若a=b,則|a|豐|b|(C)若|a|豐|b|,則|a|豐|b|(D)若|a|=|b|,貝IJa=-b108.設(shè)A」A2,A3,A4,A5是空間中給定的5個(gè)不同的點(diǎn),則使W+W+W+Mr+Mr=0成立的點(diǎn)M的個(gè)數(shù)為()A0 B1 C5 D10109.已知a與b均為單位向量,其夾角為6,有下列四個(gè)命題P:|a+b|>106P:3P:31a-b>1o6e0,gP?:|a-b|>106其中的真命題是P,PPP,PPVP2,P3P2,P4110.已知向量110.已知向量3=(1,2),b=(1,0),c=(3⑷。若九為實(shí)數(shù),((a+九b)〃),則九=()1B.1B.2C.1D.2111.若向量a=(1,2),b=(1,-1),則2a=b與a-b的夾角等于()A.一:A.一:B,■4 6兀CT3兀D-7112.已知向量a=(2,1),b=(-1,k),a-(2a-b)=0,則k=( )C.6D.12113.已知向量a=(1,k),b=(2,2),且a+b與a共線(xiàn),那么a?b的值為()A.1 B.2 C.3D.4114.在△ABC中,ab=c,AC=b.若點(diǎn)D滿(mǎn)足BD=2DC,則AD=()

A.2b+A.2b+1c33B-3c-2bC.2b-1c33D.1b+2c33+y<1,則工的取值范圍為115.已知向量a=(x+z,3),b=(2,y—z),且2+y<1,則工的取值范圍為A.L2,2]B.L2,3]C.L3,2]D,L3,3]116.如圖,正六邊形ABCDEF中,麗+CD=EF=(A)0 (B)BE(C)AD(D)CF117.直角坐標(biāo)系xOy中,1,,分別是與x,y軸正方向同向的單位向量.在直角三角形ABC中,若? —?—? . —? ―?AB=2i+j,AC=3i+左九則左的可能值個(gè)數(shù)是()A.1 B.2 C.3 D,4二、填空題114.已知向量a,b滿(mǎn)足(a+2b)?(a-b)=-6,且間=1,|b|=2,則a與b的夾角為:.已知a與b為兩個(gè)不共線(xiàn)的單位向量,k為實(shí)數(shù),若向量a+b與向量ka-b垂直,則k=..若平面向量a、p滿(mǎn)足|叫=1伊<1,且以向量a、p為鄰邊的平行四邊形的面積為2,則a和p的夾角9的取值范圍是。.已知直角梯形ABCD中,AD//BC,ZADC=900,AD=2,BC=1,P是腰DC上的動(dòng)點(diǎn),貝則PAViPB的最小值為 .在正三角形ABC中,D是BC上的點(diǎn),AB=3,BD=1,則瓦?而=。.已知a與b為兩個(gè)不共線(xiàn)的單位向量,k為實(shí)數(shù),若向量a+b與向量ka-b垂直,則k二 。.設(shè)向量a,b滿(mǎn)足Ia1=2v5,b=(2,1),且:與否的方向相反,則a的坐標(biāo)為..已知兩個(gè)單位向量即e的夾角為:,若向量b=e—2e,b=3e+4e,則b-b=___.乙 -j 乙 乙 乙 乙1.若平面向量。,0滿(mǎn)足|a|=1,|B|W1,且以向量。,0為鄰邊的平行四邊形的面積為了,則a與B的夾角?的取值范圍是。.已知單位向量e1,e2的夾角為60°,則|2e「e2=.已知直角梯形ABCD中,AD//BC,ZADC=900,AD=2,BC=1,P是腰DC上的動(dòng)點(diǎn),貝貝PA+3PB|的最小值為 .-- 2 --―…--c.已知e「e2是夾角為3兀的兩個(gè)單位向量,a=1―2e2,b=keI+e2,若a?b=0,則k的值為.已知向量3,b滿(mǎn)足(a+2b)?(a-b)=-6,且|a|=1,b=2,則a與b的夾角為:.已知向量a=(V3,1),b=(0,-1),c=(k,於),若a-2b與c共線(xiàn),則k=.

已知a已知a=(+24—3—2,貝日與「的夾角為在邊長(zhǎng)為1的正三角形ABC中,設(shè)BC=BDc;Ak=CEE,則AD-BE=已知向量a=53,1),b=(0,-1),c=(k,<3)。若a-2b與c共線(xiàn),則k=已知向量a=(2,-1),b=(-1,m),c=(-1,2)若(a+b)〃c,則m二在平行四邊形ABCD中,O是AC與BD的交點(diǎn),P,Q,M,N分別是線(xiàn)段OA、OB、OC、OD的中點(diǎn).在A,P,M,C中任取一點(diǎn)記為E,在B,Q,N,D中任取一點(diǎn)記為F.設(shè)G為滿(mǎn)足向量OG=OE+OF的點(diǎn),則在上述的點(diǎn)G組成的集合中的點(diǎn),落在平行四邊形ABCD外(不含邊界)的概率為133.如圖,在△ABC中,AD1AB,BA=./BD134.已知向量a,b滿(mǎn)足?b1=2,a與b的夾角為60°,則b在a上的投影是,135.已知平面向量a,P(a中0,a豐P)滿(mǎn)足|P|=1,且a與P-a的夾角為120。則a|的取值范圍是137.已知向量a,b滿(mǎn)足a與b的夾角為60。,則a-b=136.已知向量2=(2,-1),b=(-1,m),c=(-1,2),若(a+b)〃c,則m=-1138.已知拋物線(xiàn)C:>2=2px(137.已知向量a,b滿(mǎn)足a與b的夾角為60。,則a-b=交于點(diǎn)A,與C的一個(gè)交點(diǎn)為B.若AM=MB,則p=? 1- 2A、>.139.若等邊AABC的邊長(zhǎng)為20,平面內(nèi)一點(diǎn)乂滿(mǎn)足C=6cB+3CA則必?M=140.已知向量a=(3,1),b=(1,3),c=(k,2),若(a-c)1b則k=141.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點(diǎn),或二十,其中,R,則+=142.在四邊形ABCD142.在四邊形ABCD中,AB=DC=(1,1),baiBA+Bcbc=B3BD BD,則四邊形ABCD的面積143.若平面向量143.若平面向量a,b滿(mǎn)足a+b=1a+b平行于x軸,b=(2,-1),則a=144.給定兩個(gè)長(zhǎng)度為1的平面向量OA和OB,它們的夾角為120。.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧上變動(dòng).若OC=xOA+yOB,其中x,ygR則x+>的最大值是二

145.已知a是平面內(nèi)的單位向量,若向量匕滿(mǎn)足b,(a-b)=0,則|b的取值范圍是貝麗二146.已知平面向量a=(2,4),b=(—1,2),若c=a-(a?b)b,貝麗二147.如圖,正六邊形ABCDEF中,有下列四個(gè)命題:AC+AF=2BCACAD=AD-ABD.(ADAF)EF=AD(AF-EF)其中真命題的代號(hào)是(寫(xiě)出所有真命題的代號(hào))其中真命題的代號(hào)是(寫(xiě)出所有真命題的代號(hào)).148.已知向量a=(1,j3),b=(-2,0),則|a+b|=149.已知向量a與b的夾角為12。。,且|a|二|b|二4,那么a-b的值為150.a150.a,b的夾角為120°,b=3則5a-b=▲151.已知a,b,c151.已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量m二(、;3,-1),n二(cosA,sinA)。若m,n,且acosB+bcosA=csinC,貝^角B=—.6--* — T*一- 兀 -若向量a、b滿(mǎn)足a=1,b=2,且a與b的夾角為-,則a+b如圖,在平行四邊形ABCD中,AC=6,2)BD=(-3,2),則AD-AC=關(guān)于平面向量a,b,c.有下列三個(gè)命題:①若a?b=a-c,則b=c.②若a=(1,k),b=(-2,6),a〃b,則k=—3.③非零向量a和b滿(mǎn)足Ial=lbl=la-bI,則a與a+b的夾角為60°.其中真命題的序號(hào)為.其中真命題的序號(hào)為.(寫(xiě)出所有真命題的序號(hào))已知向量a與b的夾角為120°,且a已知向量:—(0,-1,1),b—(4,1,0),I九:+bI—v29且九〉0,則九=|—|b|-4,那么b?已知向量a與b的夾角為120°,且a兀若向量a、b滿(mǎn)足iai=1,ibi=2,且a與b的夾角為-,則Ia+bi=設(shè)向量a—(1,2),b=(2,3),若向量九a+b與向量c=(-4

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論